
Automatic Intersection Extraction and Building Arrangement
with StarCraft II Maps

Yuanbin Cheng
University of Southern California

Los Angeles, California
yuanbinc@usc.edu

Yao-Yi Chiang
University of Southern California

Los Angeles, California
yaoyic@usc.edu

ABSTRACT
In StarCraft, buildings arrangement near the intersections is one of
most the critical strategic decisions in the early stage. The high time
complexity of the buildings arrangement makes it difficult for AI
bot to make the real-time decision. This paper presents an approach
to analyze the intersection in StarCraft II maps. We propose a radar-
like algorithm to automatically detect the intersection and use a
designed heuristic search algorithm to arrange the building for
building the wall. Our method can obtain the optimal solution
while meeting the real-time requirement.

CCS CONCEPTS
• Information systems → Spatial-temporal systems;

KEYWORDS
Spatial Analysis, Heuristic Search, StarCraft

1 INTRODUCTION
StarCraft II is one of the most popular and successful real-time strat-
egy (RTS) games in the world. From the artificial intelligence (AI)
perspective, StarCraft II is the gamewithmultiple agents (player can
control hundreds of the units in game), imperfect information ("fog-
of-war" cover the unvisited region of the map), vast and diverse
action (Units can move to every point reachable in map, different
unit has different abilities), which make StarCraft II a challenging
playground for researchers to build the AI bot to automatically play
the game [2].

Spatial analysis of the game map is important for the AI bot
to make critical strategic decisions such as building planning and
route planning. Building arrangement often plays a vital role in
StarCraft II, especially for Terran and Protoss (two races in the
game). It is a common strategy to arrange the buildings to block
the narrow intersections for defending the opponent’s army in the
early stage of the game.

Blocking narrow intersections brings many challenges to the AI
bot. First, it needs to determine the position of the critical inter-
section, which separates the different areas in the map. Second, AI
bot need to make the arrangement decision for blocking the inter-
section in real-time. That means the bot should have the ability to
determine the position of the critical intersection and arranging
the buildings in short response time.

This paper presents an approach to determine the intersection in
StarCraft II maps automatically in real-time. Our method initiates
a radar-like algorithm to determine the intersection position. After
finding the intersection, a building-arrange algorithm based on
A* algorithm identifies the best locations of the buildings. The

exposure is the boundary of the buildings that enemy units can
directly attack, the shorter length of the exposure; the fewer enemy
units can attack the block. The building-arrange algorithm can
make sure the arrangement result has the shortest length of the
exposure. Moreover, compared to the general search algorithm (BFS,
DFS), the building-arrange algorithm can significantly reduce the
searched space to shorten the response time.

2 APPROACH
During the game, some information can be derived from the Star-
Craft II in-game API,1 including locations of the player and enemy’s
original base, resources locations on the map, and two grid maps.
In Figure 1, the first grid map represents the buildable grids of the
map. The second grid map in figure 2 indicates the grids that units
can pass through it.

2.1 Intersection Detection
Our method first identifies two types of intersections that are the
narrow passable place separate the different areas in the map.

Figure 1: Buildable Grid Map Figure 2: Passable Grid Map

2.1.1 Detecting the Intersections Between Different Heights. Many
essential intersections appear between two planes with different
heights. For detecting this type of the intersection, our method
extracts the areas in the map that units can pass through while the
buildings cannot be built, which is the common feature of this kind
of intersection area, by comparing the difference between two grid
maps. Figure 2 displays the result of this kind of intersection.

2.1.2 Detecting the Intersection of Narrow Terrain. Another kind
of the critical intersections appears in the narrow terrain area con-
necting the different areas in the map. We propose a radar-like
algorithm to detect this type of intersections. This algorithm iter-
atively searches for intersections by increasing the search radius
from the start point, typically the locations of base and resource.
This algorithm obtains the reachable boundary at each iteration
step and recorded the minimize over the previous steps. After the
total iteration, the algorithm finds the connected components of
1https://github.com/Blizzard/s2client-api

4



the minimize boundary as the candidate intersections. Figure 3
shows some internal states and Figure 4 present the result. In this
situation, there is only one candidate intersection.

Figure 3: Radar-like Internal
states

Figure 4: Radar-like Detec-
tion Result

2.1.3 Validity of Intersections. After getting the candidate intersec-
tions, we need to verify that the detected intersections can separate
the map into multiple parts. Our method compares the number of
the reachable grids from the start point before and after removing
the intersections to determine whether the intersection is valid. If
the number is significantly decreased, this intersection is valid.

2.2 Building Arrangement Search
After detecting of the critical intersections in the map, we utilize
the building-arrange algorithm based on A* algorithm to find the
optimal building arrangement for blocking the intersection.

2.2.1 Border of the intersection. In order to block the intersection,
the building must be close to the border, the unpassable areas and
unbuildable areas.

Figure 5: Border and Possible
Building Location

Figure 6: Building Arrange-
ment Result from A* Search

We located the border areas near the intersection by finding
all unpassable and unbuildable grids within three grids from the
intersection. The green and yellow areas in Figure 5 show the two
border areas of the intersection.

2.2.2 Building-arrange Algorithm for Building Arrangement. In Star-
Craft II, Terran usually use Supply Depot (2×2 building) and Bar-
racks (3×3 building) for blocking the intersection, and Protoss usu-
ally use Pylon (2×2 building) and Gateway (3×3 building) for block-
ing.

The blocking arrangement of the building should have two prop-
erties. First, at least one building is close to each of the border;
otherwise, the unit can pass through the gap between the border
and the building. Second, each building must be adjacent to at least
one building; otherwise, the unit can pass through the gap between
the buildings.

We designed the building-arrange algorithm based on A* search
algorithm to search the building arrangement (as the node) from

one side of the border until reaching to another side of the border
(goal). Algorithm 1 shows the algorithm process. The candidate()
obtain the candidate building locations near the current border
(Gray color areas in Figure 5). TheminManh() gain the minimize
Manhattan distance between buildings in the current state and
another part of the border (the heuristic function). Moreover, the
boundary() acquires the length of the exposure boundary of the
current state’s buildings (the cost function).

Algorithm 1 Building-Arrange Algorithm
Input: start, goal(), candidates(), boundary(),
1: if goal(start) = true then
2: return arrangment(start)
3: open ← start , closed ← ∅
4: while open , ∅ do
5: sort(open)
6: n ← open.pop()
7: candidates ← candidates(n)
8: for all cand ∈ candidates do
9: cand . f ← cand .boundary +minManh(cand)
10: if дoal(cand) = true then
11: return arrangment(cand)
12: if дoal(cand) = f alse then
13: open ← cand
14: closed ← n
15: return ∅

The minimize Manhattan distance is the lower bound of the
exposure boundary for any blocked buildings arrangements, which
can make sure that the algorithm obtains the optimal solution [1].
The time complexity in the worst case is O(bd ), b is the number of
the candidates and d is the number of buildings in the arrangement
result. Figure 6 shows the building arrangement result from the
building-arrange search.

3 EXPERIMENTS
We conducted experiments on all maps from the StarCraft II Ladder
2017. For the original base location and the closest expand resource
location, our approach could find the right intersection and plan the
appropriate building locations for all maps. The number of nodes
expanded in search for all map is less than one hundred, which
meet the real-time requirement. For the start point in the middle of
the map, due to the increase in connectivity paths and the variety
of the terrain, our approach build lots of redundant buildings for
blocking the location and need to expand hundreds of nodes to get
the building arrangement.

REFERENCES
[1] P. E. Hart, N. J. Nilsson, and B. Raphael. 1968. A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics 4, 2 (July 1968), 100–107.

[2] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A.
Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney, S. Petersen,
K. Simonyan, T. Schaul, H. van Hasselt, D. Silver, T. P. Lillicrap, K. Calderone, P.
Keet, A. Brunasso, D. Lawrence, A. Ekermo, J. Repp, and R. Tsing. 2017. StarCraft
II: A New Challenge for Reinforcement Learning. CoRR abs/1708.04782 (2017).

5




