
An Approach for Recognizing Text Labels in Raster Maps

Yao-Yi Chiang and Craig A. Knoblock
University of Southern California

Department of Computer Science and Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292

yaoyichi, knoblock@isi.edu

Abstract
Text labels in raster maps provide valuable geospa-

tial information by associating geographical names
with geospatial locations. Although present commer-
cial optical character recognition (OCR) products can
achieve a high recognition rate on documents contain-
ing text lines of the same orientation, text recognition
on raster maps is challenging due to the varying text
orientations and the overlap of text labels. This paper
presents a text recognition approach that focuses on lo-
cating individual text labels in the map and detecting
their orientations to then leverage the horizontal text
recognition capability of commercial OCR software. We
show that our approach detects accurate string orienta-
tions and achieves 96.2% precision and 94.7% recall on
character recognition and 80.6% precision and 84.1%
recall on word recognition.

1. Introduction
Maps are easily accessible compared to other

geospatial data, such as vector data, satellite imagery,
gazetteers, etc. Due to the availability of high quality
scanners and the Internet, we can now obtain various
maps in raster format for areas around the globe. By
converting the text labels in a raster map to machine-
editable text, we can produce geospatial knowledge for
understanding the map region while other geospatial
data are not ready available. Moreover, we can register
a raster map to other geospatial data (e.g., imagery) [3]
and exploit the recognized text from the map for index-
ing and retrieval of the other geospatial data.

Text recognition from raster maps is a challenging
task. First, the image quality of the raster maps usually
suffers from the scanning and/or image compression
processes. Second, the text labels in a raster map can
have various font types and sizes and very often over-
lap with each other or with other features in the map,
such as roads. Third, the text labels within a map do not
follow a fixed orientation.

In this paper, we present a general approach to over-
come these difficulties for recognizing text labels in
raster maps. We first quantize the raster map to generate
a color palette with a limited number of colors, and we
use user-specified colors from the color palette to ex-
tract the pixels of text labels (i.e., the text layer). Then,
we perform the connected-component analysis on the
text layer to identify characters, group characters into
strings, and split overlapping strings. For the identified
strings, we detect their orientations and rotate individ-
ual string to the horizontal direction. Finally, we pro-
cess the horizontal strings using commercial software
for recognizing the characters. We tested our approach
on two maps of varying text fonts and sizes and show
that we can achieve accurate recognition rates.

The remainder of this paper is organized as follows.
Section 2 discusses related work on text recognition
from raster maps. Section 3, 4, and 5 present our ap-
proach to detect and prepare string labels for commer-
cial OCR software. Section 6 reports our experimental
results, and Section 7 presents the discussion and future
work.

2. Related Work
Text recognition from raster maps has been an ac-

tive research area. One type of research builds specific
character recognition components for handling multi-
oriented text labels [1, 5], which differs from classic
OCR research that assumes the documents containing
text lines all in a single orientation. Deseilligny et al. [5]
use rotation-invariant features and Adam et al. [1] use
image features based on the Fourier-Mellin Transfor-
mation to compare the target characters with the trained
character samples for recognizing text labels in maps.
These methods require intensive training, such as pro-
viding sample characters for maps using different fonts
to generate distinct feature sets for the classification.

For the techniques that employ classic OCR meth-
ods as their character recognition components, Li

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.783

3191

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.783

3203

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.783

3199

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.783

3199

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.783

3199

Authorized licensed use limited to: University of Southern California. Downloaded on December 05,2020 at 05:10:00 UTC from IEEE Xplore. Restrictions apply.

et al. [7] identify the graphics layer and text labels
using the connected-component analysis and extrapo-
late the graphics layer to remove the lines that overlap
with characters. Then, a template-matching-based OCR
component is used to recognize characters from the text
labels. Cao and Tan [2] analyze the geometry properties
of the connected components to first separate text labels
from graphics. The separated graphics layer is then de-
composed into line segments and a size filter is used to
recover the character strokes that touch the lines. Fi-
nally, an OCR application from HP is used to recognize
the text labels. In both [7] and [2], the identified text
labels are manually rotated to the horizontal direction
for the final character recognition task.

Pouderoux et al. [9] use dynamic parameters gener-
ated from the geometry of the connected components
to identify strings in raster maps; however, they do not
consider overlapping labels, which commonly exist in
maps. The identified strings are then rendered hori-
zontally for character recognition using the average an-
gle connecting the centroid points of the components
in a string, which can be inaccurate when the charac-
ters have very different heights or widths. For exam-
ple, consider the substring ‘afa’ from one of our test
maps, the angle of the line connecting the centroid of
the first ‘a’ and the centroid of ‘f’ is almost perpendic-
ular to the line connecting ‘f’ and the second ‘a’. In
our approach, we use a robust skew detection method
derived from a morphological-operator based skew de-
tection technique [8] to identify the orientation of each
string automatically.

3. Extracting Text Pixels

Raster maps usually contain numerous colors due to
the scanning or compression processes. To extract the
text pixels, we apply color segmentation techniques to
reduce the number of colors in the maps for generating
a color palette with a limited number of colors. We first
utilize the Mean-shift filtering algorithm [4] to smooth
the image and reduce noise. The Mean-shift filtering
algorithm merges two colors into one by considering
their distance in the color and image spaces, which pre-
serves the object edges while performing the segmen-
tation. Next, we utilize a color quantization method
called the Median-cut [6] to generate a image with at
most 1,024 colors. We present the quantized image
to the user for selecting a set of colors that represents
text in the map; however, if a set of colors is used on
both text and other features, text separation techniques,
such as the one developed by Cao and Tan [2] or the
connected-component analysis can be used to remove
graphics. Figure 1(a) shows an example of the extracted
text layer.

(a) An example text layer (b) Dilated characters

(c) String groups (d) Individual strings

Figure 1. Locating strings in the map

4. Identifying Strings
With the extracted text layer, the user provides a

sample string for each of the font sizes used in the text
layer and indicates how many characters are in the sam-
ple string. We then compute the character width and
character spacing for each font size using the sample
strings. If the text layer has more than one font size, we
separate the text layer into sub-layers by performing the
connected-component analysis with a size threshold on
every connected component. Therefore, every sub-layer
contains characters of a similar size.

To group characters in the text layer into strings, we
use the dilation operator to merge nearby characters.
We determine the iteration of the dilation operator using
the character spacing. Figure 1(b) shows the results of
the merged characters and Figure 1(c) shows the iden-
tified strings using the rectangles. The dilation operator
has the advantage that it can group characters in curved
strings, but it can also merge nearby strings [2].

Figure 2 shows a merged string, where ‘W’ over-
laps with ‘n’ and ‘T’ overlaps with ‘y’. To separate
the merged string, we first use the distance transforma-
tion to calculate the pixel distance between each con-
nected component in the string. Two connected compo-
nents are linked if the distance in pixels between them
is smaller than a threshold, which is also determined by
the character spacing. Next, we start to trace the con-
nected components following the links in each merged

31923204320032003200

Authorized licensed use limited to: University of Southern California. Downloaded on December 05,2020 at 05:10:00 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Splitting merged strings

string and identify individual strings. Finally, we iden-
tify two types of connected components as the splitting
points: The first type is the connected components that
have more than three links, such as ‘Ty’. The second
type is the connected components that constitute an an-
gle smaller than a threshold with the two neighbors,
such as ‘Wn’ and its neighbors ‘a’ and ‘A’. We calculate
the angle between three connected components using
the centroid of each connected component. In the case
where three connected components of the same height
constitute a straight string, the angle is 180 degrees.
However, since the connected components have vari-
ous heights, we use an angle threshold of 145 degrees to
prevent breaking a continuous string. For the maps with
curved labels, we use an angle threshold of 125 degrees
to preserve them. After we identify the splitting points,
we can produce individual strings as shown on the right
side of Figure 2.

5. Detecting String Orientation
Skew correction is well developed in modern OCR

techniques; however, classic skew correction can only
be applied to multi-line documents since the line spac-
ing is exploited to detect the tilt angle, such as the
morphological-operator based method [8]. We mod-
ify the morphological-operator based skew correction
to detect the orientation for a single string by automat-
ically selecting different sizes of structure elements of
the morphological operators (i.e., the closing and ero-
sion operators) for each string image.

We first rotate the string image by 0 degree to 179
degrees and apply the closing operator on the rotated
images using a structure element of height equal to one
pixel and width equal to the character width plus char-
acter spacing to grow string blobs, as shown in the mid-
dle row in Figure 3. Then, we use the maximum hori-
zontal width among the rotated strings to determine the
width of the structure element of the erosion operator.

We identify the horizontal string among the rotated
strings using the number of remaining pixels after we
apply the erosion operator. The bottom row in Figure 3
shows example results after we apply the erosion op-
erator where the horizontal string has more remaining
pixels than the tilted string. If we use a fixed erosion
operator on all strings, a larger-sized erosion operator
eliminates all foreground pixels of shorter strings even
if the strings are in the horizontal direction. If we use

Figure 3. Detecting string orientation us-
ing morphological operators

a smaller-sized erosion operator, it can only eliminate
a small percentage of the foreground pixels so that af-
ter the erosion the horizontal string might not be the
string with the most remaining pixels among the rotated
strings.

We only apply the morphological-operator based ori-
entation detection on the strings having more than three
connected components. This is because the detected
orientation of a short string can be dominated by the
heights of the short strings connected components us-
ing our method. Since short strings in a raster map
are usually part of a longer label, we search from the
centroid of a short string for nearby strings and use the
orientations of the nearby strings as the short string’s
possible orientations. For example, the most common
short strings in our test maps are ‘Av’ as avenue, ‘Dr’
as drive, and ’Cir’ as circle, which are all part of a road
name. We used a dynamic distance-threshold derived
from the size of the bounding box of each string to limit
the search space.

Once we have the string orientations, for each string,
we rotate the string clockwise and counterclockwise to
the horizontal direction according to its possible orien-
tations (short strings might have more than one detected
orientation depending on the number of its neighboring
strings) to generate a set of rotated strings. Then, to
identify the correctly oriented horizontal string (i.e., not
the upside-down one), we send all rotated strings to a
commercial OCR product called ABBYY FineReader
10 and automatically select the rotated string with the
highest returned recognition confidence.

6. Experimental Setup and Results
We tested our approach on maps from two sources.

One test map is a digital map (850x850 pixels) pub-
lished by Rand McNally (RM map) covering St. Louis,
MO. A second test map is a map tile (2750x2372 pixels)
cropped from a scanned map (350 dot-per-inch) pub-
lished by International Travel Maps (ITM map) cov-
ering Baghdad, Iraq. The two maps contain a total of
1,656 characters and 296 words (four words are curved
strings).

We first detected strings and their orientation(s) (a
detected string is a group of characters, which can be
a sub-string of a word). We detected 308 strings from
the two maps, and we applied our orientation detection
on 225 of the detected strings that have more than three

31933205320132013201

Authorized licensed use limited to: University of Southern California. Downloaded on December 05,2020 at 05:10:00 UTC from IEEE Xplore. Restrictions apply.

connected components. After manual verification, 219
strings have their detected orientations with a 0 degree
offset to the ground truth and the average orientation
offset for the six inaccurate strings is 4.8 degrees. The
inaccurate orientations come from the shorter strings
that have at least one character having very different
size than the others, such as ‘Talaa’. For the 83 strings
that have fewer than four connected components, we
searched nearby strings to assign their orientations, and
eight of them we could not find a nearby string for the
given search threshold. This is because five of the eight
strings are near the boarders of the maps and the other
three are isolated characters. For the short strings where
we found at least one nearby string (the number of
nearby strings we found ranges from one to three), three
strings do not have the correct orientations passed from
their nearby strings. This is because the short strings
are near the boarders of the maps and hence the short
strings do not follow any of the string orientations near
them.

Table 1 shows the OCR results. A portion of the
unrecognized characters is due to the fact that we did
not find the orientations for some of the short strings, so
they were not sent to the character recognition task. The
problem of the missing orientations can be resolved by
performing OCR on multiple degrees to recognize the
characters since there are only a few strings where we
did not detect the correct orientations. The other part
of the unrecognized characters and false-positives come
from some of the overlapping characters, such as the ‘n
’ and ‘w’ shown in Figure 2.

For the word level accuracy, we successfully recog-
nized 249 words among 296 words in the two maps. For
37 of the words, we did not successfully recognize all
of their characters. In addition, we mis-split 10 words
into 21 substrings. The problem of the mis-split words
is due to the fact that the neighboring characters in these
words have very different sizes and some characters can
be misidentified as the splitting points. For example, we
mis-split the word ‘Haifa’ into ‘Haif’ and ‘fa’ since ‘f’
was misidentified as a splitting point. In the cases of the
overlapping characters and mis-split words, additional
knowledge such as a geographical name database, can
help as a dictionary to improve the results. For com-
parison, we ran the OCR application directly on the two
maps. The OCR application could recognize only non-
overlapping labels in the horizontal direction, which are
about two-thirds of the words in the two maps.

7. Discussion and Future Work

In this paper, we presented an approach to automati-
cally recognize text labels in raster maps. Our approach
focuses on locating individual strings and detecting the

Table 1. OCR results (P. is precision and
R. is recall)

Map Char. P. Char. R. Word P. Word R.
RM 95.6% 93.1% 76.3% 79.3%
ITM 96.3% 95% 81.5% 85.2%

string orientations to then leverage the horizontal text
recognition capability of commercial OCR software.
By doing so, our approach requires little user training
and benefits from future improvements on commercial
OCR software. Our experiments show accurate results
on detecting string orientations and recognizing text la-
bels. In the future, we plan to include additional knowl-
edge of the map region to build a dictionary for improv-
ing the OCR accuracy on overlapping characters.

Acknowledgments
The author would like to thank Dr. Chia-Hsiang

Yang for his input on the article. This research is based
upon work supported in part by the University of South-
ern California under the Viterbi School Doctoral Fel-
lowship.

References
[1] S. Adam, J. Ogier, C. Cariou, R. Mullot, J. Labiche,

and J. Gardes. Symbol and character recognition:
application to engineering drawings. IJDAR, 3(2):
89–101, 2000.

[2] R. Cao and C. L. Tan. Text/graphics separation in
maps. In Proceedings of the 4th GREC Workshop,
pages 167–177, 2002.

[3] C.-C. Chen, C. A. Knoblock, and C. Shahabi. Au-
tomatically and accurately conflating raster maps
with orthoimagery. GeoInformatica, 12(3):377–
410, 2008.

[4] D. Comaniciu and P. Meer. Mean shift: a robust ap-
proach toward feature space analysis. IEEE Trans-
actions on PAMI, 24(5):603–619, 2002.

[5] M. P. Deseilligny, H. L. Mena, and G. Stamonb.
Character string recognition on maps, a rotation-
invariant recognition method. Pattern Recognition
Letters, 16(12):1297–1310, 1995.

[6] P. Heckbert. Color image quantization for frame
buffer display. SIGGRAPH, 16(3):297–307, 1982.

[7] L. Li, G. Nagy, A. Samal, S. C. Seth, and Y. Xu.
Integrated text and line-art extraction from a topo-
graphic map. IJDAR, 2(4):177–185, 2000.

[8] L. Najman. Using mathematical morphology for
document skew estimation. SPIE DRR IX, pages
182–191, 2004.

[9] J. Pouderoux, J. C. Gonzato, A. Pereira, and P. Gui-
tton. Toponym recognition in scanned color topo-
graphic maps. In Proceedings of the 9th ICDAR,
volume 1, pages 531–535, 2007.

31943206320232023202

Authorized licensed use limited to: University of Southern California. Downloaded on December 05,2020 at 05:10:00 UTC from IEEE Xplore. Restrictions apply.

