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1. Introduction 

Graphic symbols in maps depict important and interesting geographic phenomena, such as wetlands (Figure 1). 

The descriptive metadata of these symbols can be found in map labels or keys; however, labels are only capable 

of displaying limited information (e.g., place names) and keys provide categorical information. For example, 

Figure 2 shows a group of unique buildings in a U.S. Geological Survey (USGS) topographic map but the map 

does not provide any information about these buildings (e.g., names). Figure 3 shows a scanned map of 

Baghdad, Iraq where most symbols are labeled with place names but retrieving and integrating further 

information (e.g., addresses) of these places from other sources requires additional efforts such as using the 

place names and locations to search on Wikipedia or DBpedia (a structured version of Wikipedia). 

In this paper, we present a training-by-example approach for spotting graphic symbols in raster maps. We 

demonstrate that our approach efficiently enables automatic linkages between DBpedia records and locations in 

a map. Traditional document analysis techniques for spotting map symbols generally require a large amount of 

training datasets, the presence of map keys (e.g., Samet and Soffer, 1998), or ad-hoc preprocessing steps (e.g., 

image thresholding) (Chiang et al, 2014; Lladós et al., 2002). In contrast, our approach takes only one user-

selected symbol example to extract the locations of all symbols that have similar graphical appearance to the 

example.  

 

 
Figure 1: Wetlands in a historical USGS topographic map (Miami, Florida, circa 1958). 

 

  
Figure 2: Buildings of the Park La Brea Apartment in a historical USGS topographic map (Hollywood, 

California, circa 1953) (left) and Google Earth imagery (right). 
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Figure 3: Symbols labeled with place names in a scanned Baghdad map. 

 

Figure 5: A user-selected symbol example. 

2. Symbol Spotting 

This section presents our symbol spotting approach called 

SymbolRecognizer (Figure 4). A model image is an image that covers a 

user-selected example in the input map (the red rectangle in Figure 5). 

The recognition task is to search the map for symbols that matches the 

model (i.e., target symbols). SymbolRecognizer utilizes a two-phase 

process: (1) Using the SURF (Speeded Up Robust Features) matching 

(Lowe, 1999; Bay et al., 2006) to efficiently identify the local regions 

(sub-images) where a target symbol might present and (2) Using pixel 

intensity distribution (with histogram matching) to verify the presence of 

a target symbol in each sub-image. 

2.2 SURF (Speeded Up Robust Features) Matching 

Considering a model image with width and height equal to w and h 

pixels, in the first phase, SymbolRecognizer uses a sliding window of 

the size equal to 2w and 2h pixels and moves w or h pixels in the 

horizontal or vertical direction to scan through the entire input map 

(Figure 6). The size of the sliding window guarantees that every target 

symbol is covered completely in at least one window (a sub-image). At 

each position of the sliding window, SymbolRecognizer detects the 

SURF features from the sub-image and compares the detected features 

with the SURF features of the model image. If the comparison result 

contains a high number of matched features, the sub-image is highly 

likely to contain a target symbol (see Lowe (1999) for details of this 

object recognition procedure) and is passed to the next phase. 

 
Figure 4: The SymbolRecognizer 

framework. 

 

 
Figure 6: The SURF matching 

sliding window. 
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2.2 Histogram Matching 

The SURF matching is efficient and widely used to recognize real world objects in photography or videos, but 

map symbols have simpler shapes (than real world objects) and are relatively small, which can cause frequent 

false positives in the matching results. Therefore, SymbolRecognizer compares the pixel intensity distributions 

of the model image and each sub-image that passes the SURF matching to determine whether or not a target 

symbol presents and to extract the symbol location. 

For each sub-image that passes the first phase, SymbolRecognizer uses the model image to scan from the 

top-left corner and moves one pixel in the horizontal or vertical directions (i.e., Sliding Window 2 in Figure 4). 

Each scanning position records a similarity score calculated using the correlation of the grayscale histogram of 

the model image (�!"#$%) and the grayscale histogram of the overlapping image patch (the overlapping area 

between the model image and the sub-image) (�
!"#$!

). The correlation is defined as follows: 
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SymbolRecognizer uses an empirically set threshold of 90% on the similarity score to filter out the sub-

images that do not contain a target symbol and to locate the symbol location. If none of the scanning positions in 

a sub-image has a similarity score higher than 90%, the sub-image does not contain a target symbol; otherwise, 

the scanning position that has the highest similarity score (in a sub-image) is the detected location of a target 

symbol. 

2.3 Result Consolidation 

A target symbol can be detected in overlapping sub-images during the SURF matching since the sliding window 

can cover a symbol more than once (Figure 7(a)). To consolidate the results, if overlapping sub-images contain 

multiple target symbols, SymbolRecognizer keeps only the target symbol with the highest histogram matching 

score (Figure 7(b)). 

 

        
          (a) Before consolidation.            (b) After consolidation. 

Figure 7: Result consolidation for overlapping sub-images. 

3. Preliminary Results and Discussion 

We implemented SymbolRecognizer in our map processing system, Strabo, as an Esri ArcMap plugin and tested 

the plugin with maps from four sources (Figure 3, Figure 8, and Table 1). For each test map, the user selected 

one sample symbol and Strabo automatically processed the sample to find other symbols in the map.  

The results showed promising extraction precision (with only a few false positives). The USGS Hollywood 

map had the lowest extraction precision since the target symbols (the Park La Brea apartment buildings) are in 

different orientations. Although the SURF matching is rotation invariant, the histogram matching results could 

be compromised if the image patch did not cover the entire symbol of different orientations in the sub-image. 

All other test maps that contain symbols in the same orientation had more than 97% extraction precision.  

Considering the extraction recall, significantly overlapped features were the main cause of true negatives. 

Figure 9 shows two examples of overlapping symbols in the USGS Mine and Mineral map. The overlapping 

symbol to the right was detected because only a small portion of the symbol was overlapped by another symbol. 

The symbol to the left (Figure 9) was not detected since the entire symbol was almost covered by other symbols. 

The USGS Mine and Mineral map contains 12 (out of 25) significantly overlapped symbols and hence the 

extraction recall was the lowest among the test maps. All other test maps had more than 83% extraction recall. 
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(a) A historical USGS topographic map (Miami, Florida, 1958). 

 

   
(b) The USGS Mine and Mineral Processing Plant Locations map. 

 

  
(c) A historical USGS topographic map (Hollywood, California, circa 1953). 

Figure 8: Model images (left) and sample results where blue rectangles are the recognized locations (right). 

 

Table 1. Recognition Results. 

Source 
Image Size 

(pixels) 

# of Target 

Symbols 
Precision Recall 

USGS Miami (1958) 409x438 87 97.33% 83.91% 

USGS Mine and Mineral  2465x2150 25 100% 48% 

USGS Hollywood (1953) 554x396 18 88.89% 88.89% 

Gecko Maps, Baghdad 5104x2616 17 100% 88.23% 

 

267



  
Figure 9: Examples of overlapping symbols. 

 

Figure 10 shows the Baghdad map with the identified symbols linked with DBpedia URIs. Once the 

symbols were identified, Strabo queried the DBpedia SPARQL endpoint to retrieve the nearest DBpedia entries 

to individual symbol locations. These entries had various DBpedia types such as Museum, Embassy, School, 

and Hotel. Since the identified symbols represented places in the same category, Strabo first detected the most 

popular category among the retrieved entries and only linked a symbol to DBpedia if the closest entry of the 

symbol was in the popular category. In this test area, the most popular category is Hotel and there were only 

four hotel entries on DBpedia. 

 

 
Figure 10: Automatic linkages between map locations and DBpedia records. 
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4. Summary and Outlook 

We presented a training-by-example approach for symbol spotting from raster maps. Our approach requires very 

little user effort and can handle various types of maps and symbols. We plan to test on more symbol types and 

further investigate automatic methods to link the extracted symbol locations to other sources.  
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1. Introduction 

Predicting the next location of a user from their movement history is useful in building 

intelligent applications that can continuously assist users without explicit user-input. Data 

collected by applications on consumer-grade mobile devices, such as GPS data, can have 

missing records (e.g., due to the application crashing) and the sensor sampling frequency 

needs to be kept low so that it does not drain the mobile battery. Thus, there can be a 

significant time gap between each pair of recordings. Our work in this paper focuses on 

predicting the next location of a mobile user using such sparse GPS data, collected at a very 

low frequency of once every 10 minutes. To give an example of dense data, Krumm and 

Horvitz (2005, 2006) use data collected once in every six seconds. 

 

 
Figure 1: Movement patterns may be disjoint. The blue and the red points were recorded on 

two different days. 

 

Sparseness in GPS data makes finding patterns in a user's movement history difficult. 

Moreover, the low sampling rate might capture movement patterns that are along the same 

path but are disjoint (Figure 1). Losses in GPS connection and imperfect behavior of the data 

collection application further increase the sparseness of the data. We tackle the problem of 

sparseness by interpolating user movements using a routing service.  

Location prediction can be viewed as a classification problem in which the possible next 

locations are discrete classes, but GPS data is continuous in nature. Hence, we use a grid over 

the region where the data is centered, and map the points to grid-blocks. Another possible 

method of location abstraction is mapping points to the nearest mapped addresses according 

to maps such as Baidu Maps and OpenStreetMap. This is known as reverse geocoding. This 
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approach depends significantly on the accuracy and the amount of address information 

available for the region where the data is collected. With insufficient address information, 

such as in our case, using reverse geocoding results in a lot of repetition in location-IDs as 

many points map to a single location-ID. This leads to loss of movement information. 

We also discuss the results of using four different Markov models for the prediction task 

on the sparse and the processed data. 

 
Figure 2: Location Prediction System for Sparse GPS Data. 

2. Next Location Prediction 

Figure 2 shows the overall workflow of our approach. The sparse GPS data is populated 

using a routing service to produce a dense set of user movement history, additional features 

(such as direction-of-motion, described later) are added, and the points are abstracted to 

locations using a grid. The resulting features are given as inputs to the prediction model. 

2.1 Dealing with Sparseness 

Our approach uses a routing service to find the shortest path between every consecutive pair 

of points and uses the route returned to fill the gap between the pair with dummy points. The 

underlying assumption is that people tend to take the shortest path between any two places 

that are near one another, especially when they are separated by just 10 minutes in time.  

 

 
Figure 3: The blue points are original points in the data while the green ones were added 

using the routing service. 

 

For example, Figure 3 shows how our system populated some of the data that we work on. 

The interpolated points filled in using the routing service complete the original path very 
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elegantly. We use the Google Directions API
1
 to get the shortest driving route between 

consecutive pairs of points. 

2.2 Features and Prediction Models 

We use Markov models to predict the next grid-block the user will be in, as illustrated in 

Figure 4. Markov models help in describing sequences of events and their associated 

probabilities. Cheng et al. (2003) explain how Markov models can be used for location 

prediction. We employ four different Markov models to test four hypotheses for location 

prediction from sparse GPS data: 

• order-1 Markov model (O1MM): predict the next location of the user based on their 

last known location 

• order-2 Markov model (O2MM): predict the next location based on their two last 

known locations 

• order-2 Markov model with fallback on order-1 Markov model (FMM): try predicting 

with O2MM, and when it fails to make a prediction, use O1MM 

• order-1 Markov model with direction-of-motion feature (O1MMD): we use the 

direction-of-motion between every consecutive pair of points. The directions that we 

employ are: North, North-East, East, South-East, South, South-West, West, North-

West, and stationary. This feature removes the need of keeping track of multiple 

previous locations as it captures the information contained in them. 

 

 
Figure 4: Predicting the next grid-block the user will be in. The model has learnt user 

movement patterns from day-1 (red line) and day-2 (orange line). On day-3 (yellow squares), 

it predicts the next location of the user in the upward direction (as learnt from the previous 

day). 

3. Experiments and Results 

Our data were collected by a user in Shenzhen, China over a 24 day period. On average, it 

has 14 GPS points in a day. We used the aforementioned Markov models for the task of 

location prediction on both the original data and the data resulting from the application of our 

processing steps. We calculated the average prediction accuracies using two experiment 

settings: the leave-one-day-out cross-validation setting (L1CV) uses the data from a 

particular day as test data and data from all other days as training data, and the sequential data 

                                                
1
 http://developers.google.com/maps/documentation/directions 
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setting (SEQ) that uses data from a particular day as test data and data from only the days in 

the movement history before that day as training data. While cross-validation is a general 

approach to comparing the accuracies of machine learning models, SEQ is closer to how we 

would want the prediction to work in real world settings. A correct prediction is one that 

matches the next observed grid-block of the user. Our accuracy measure is the fraction of 

predictions that are correct. 

 

 
Figure 5: Average SEQ accuracy. 

 

 
Figure 6: Average L1CV accuracy. 

 

Figures 5 & 6 summarize our results. O1MMD and FMM performed almost equally well 

and better than the other models on the processed data. The desired order of accuracies 

should be O1MM ≤ O2MM ≤ FMM as the ones to the right make use of more information 

about the user’s history, but we do not find this order in case of sparse data as O2MM could 

not learn many patterns because of the sparseness. In general, the prediction models were 

unable to learn patterns in the user's movements from the sparse GPS data. Solving the 

problem of sparseness improves their prediction accuracies. The overall accuracies appear 

low because of significant randomness in the movement patterns of the user whose data we 

used. It has been found that randomness in a user's movement patterns reduces the accuracy 

of prediction models (Anagnostopoulos et al. 2009). Such randomness is inevitable in the 

movements of real users. 
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4. Related Work 

Krumm and Horvitz (2006) use grid-based location abstraction to predict the destination of 

the user from partial trajectories. Our work is different from theirs as we predict the user’s 

next location, and our data is much more sparse than theirs. While their data is collected once 

every 6 seconds, ours is collected once every 10 minutes. Gao et al. (2012) report that 

Hierarchical Pitman-Yor language gives a higher accuracy as compared to Markov models. 

Anagnostopoulos et al. (2009) implemented location prediction using decision trees, k-

nearest neighbor, and ensemble learning algorithms, and found that ensemble learning 

algorithms performed the best among them. The methods proposed in this past work cannot 

be applied directly to sparse data, such as ours, as the machine learning algorithms used in 

them will be unable to learn patterns effectively. Our processing steps interpolate the sparse 

data and improve location prediction on such data. 

5. Discussion and Future Work 

This paper presented an approach for location prediction using sparse user movement history. 

We showed that by exploiting an online routing service, we made location prediction possible 

on sparse movement data. We plan to build an intelligent method for automatically 

generating the dynamic grid size specific to a dataset and to incorporate other sensor data on 

mobile phones into the location prediction framework. 
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