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Abstract—There are increasing numbers of online sources
of real-time and historical location-dependent time-series data
describing various types of environmental phenomena, e.g.,
traffic conditions and air quality levels. When coupled with
the information that characterizes the natural and built envi-
ronments, these location-dependent time-series data can help
better understand interactions between and within human social
systems and the ecosystem. Nevertheless, these data are still
limited by their spatial and temporal resolution for downstream
use (e.g., generating residential-level environmental exposures for
human health studies). In this paper, we present a vision of a
general machine learning framework for explainable predictive
analytics for location-dependent time-series data. The framework
will effectively deal with data- and model-related challenges for
general scientific predictive analytics on spatiotemporal environ-
mental phenomena. The challenges include how to identify the
main features driving the phenomena, how to handle complex
spatiotemporal variations in the phenomena, and how to utilize
sparse ground truth measurements for training and validation.
The resulting framework will enable fine spatial and temporal
scale environmental exposure assessment and allow researchers
to carry out unprecedented inquiries, such as understanding re-
lationships between health outcomes and long-term air pollution
exposures.

Index Terms—spatial data science, spatiotemporal data, pre-
dictive analytics, machine learning

I. VISION

With the widespread use of sensors that measure a variety

of environmental phenomena and the fast-growing application

of the Internet of Things (IoT), there are increasing amounts

of real-time and historical spatiotemporal data available to the

scientific community through large-scale and publicly avail-

able databases and application programming interfaces (API).

For example, traffic sensors provide real-time assessments

of the traffic volume along the freeways and arterial roads

(e.g., [1]). Air quality monitoring stations offer both real-

time and long-term measurements of air pollutants at multiple

locations.1 Effective uses of these location-dependent time-

series data can have wide-reaching impacts across multiple

domains such as smart cities, urban planning, policymaking,

and public health. For instance, bus GPS trajectory data can

help generate performance metrics for investigating public

transportation systems towards reducing the operating costs

and increasing ridership [2]. Regardless, these data are limited

by the number of available sensors, which are often not

sufficient in terms of their spatial and temporal resolutions

for downstream use (e.g., the human health studies that re-

quire residential level environmental exposures [3]). This data-

related challenge makes it difficult to use sensor data alone to

accurately track the phenomena with complex spatiotemporal

variations. Therefore, to fully exploit the potential of available

sensors for close modeling and tracking of human-environment

interactions, there is an urgent need for a general method

that can effectively leverage the location-dependent time-series

data, together with the information of the natural and built

environment, for the accurate prediction of spatiotemporal

phenomena over fine spatial and temporal resolutions.

Traditionally, spatiotemporal predictions require labor- and

expert-intensive efforts to process heterogeneous data to then

make meaningful interpretations or predictions from the data

(e.g., [4]). Machine learning technologies could alleviate these

requirements, but they typically require large amounts of

training data, which are costly to produce. Moreover, careful

considerations of the spatial relationships in the data are

essential but often overlooked, causing inaccurate results (e.g.,

overfitting from spatial non-stationarity and statistical bias

from spatial autocorrelations and the modifiable areal unit

problem, see [5, 6, 7]). These considerations are challenging

to realize for complex machine learning models (e.g., deep

neural networks) without a deep understanding of spatial

1https://www.epa.gov/air-quality-management-process/
managing-air-quality-ambient-air-monitoring
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sciences. Hence, very often, machine learning models would

only incorporate simple assumptions (e.g., nearby objects

are similar) [8] or directly treat the spatial dimension as

yet another independent variable (e.g., adding longitude and

latitude as location indicators in the model). This model-

related challenge hinders the studies that require an effective

investigation and interpretation of the interactions between

these location-dependent time-series data and the contributors

(e.g., natural and built environment) to fully understand and

explain the phenomena.

We envision a general machine learning architecture

for explainable fine-scale predictions of universal location-

dependent time-series from limited observations. The resulting

architecture will contribute to fine spatial and temporal scale

assessments of various environmental phenomena (e.g., urban

air quality and noise levels) . Linking such results to health

studies (e.g., cancer and asthma [9, 10, 11]) or wearable sensor

measurements (e.g., [12]) will enable researchers to carry out

unprecedented inquiries of the relationships between health

outcomes and exposure impacts.

II. CURRENT LIMITATIONS & CHALLENGES

Without loss of generality, here we define a scientific pre-

diction process for spatiotemporal data as follows. The process

aims to predict a value (e.g., PM2.5 concentrations) on a spatial

grid with a high resolution (e.g., a grid map with a uniform

cell size of 500 meters by 500 meters, 500m×500m). The

input data is a multi-dimensional matrix X = (O,F,H,W )
representing observation values, O, and sets of environmental

features, F , over the space where H and W represent the

height and width of the grid, respectively. Note that O can be

a null value representing no observation at a specific cell. The

output matrix is Y = (P,H,W ), where P represents the cell

predictions (dimension=1).

Let X(t) represent the input signal at time t; T ′ is the

number of previous hours (i.e., from t − T ′ + 1 to t). The

prediction technology aims to learn a function h that maps T ′

historical input signals to the output at t:

[X(t−T ′+1), · · · ,X(t)]
h−→ [Y (t)]

where the function h can jointly model the spatial and tempo-

ral dependencies between features in F and their interactions

with the observation values O.

In general, scientific prediction processes dealing with

location-dependent time-series data and their underlying spa-

tiotemporal phenomena are inherently difficult due to sev-

eral data- and modeling-related challenges. These challenges

include identifying the main contributors driving the phe-

nomena, handling of complex spatiotemporal dependencies in

the data, and sparse ground truth measurements for training

and validation. Specifically, current prediction technologies

have the following limitations. First, they do not generate

explainable prediction results automatically (Section II-A).

Some of the existing techniques do not explicitly include

explanatory variables about surrounding environmental char-

acteristics (e.g., inverse distance weighting). Other techniques

require careful considerations of manually selecting related

factors using domain knowledge (e.g., land use regression [4])

or only provide “black box” results that are not interpretable

(e.g., deep learning models). Second, existing technologies

cannot effectively capture relationships between the target phe-

nomenon and explanatory variables (e.g., built environment) in

both space and time simultaneously (e.g., [13]) (Section II-B).

Third, they do not perform well with sparse sensor locations

(e.g., [5]) (Section II-C).

A. Generating Explainable Prediction Results

Generating explainable prediction results allows the explicit

understanding of how the environmental characteristics con-

tribute to spatiotemporal phenomena, such as air pollution,

and enables informed policymaking or interventions (e.g.,

actions for air pollution prevention and control). Explainable

(or interpretable) prediction models have the ability to present

in terms understandable to a human [14]. Traditional spatial

interpolation methods for spatial prediction tasks, such as the

Inverse Distance Weighting (IDW) and ordinary Kriging [15]

do not explicitly include explanatory variables about environ-

mental characteristics such as meteorology and topography.

Although these methods are generally computational efficient

compared to machine learning or data-driven methods, the

results are not explainable, and their ability to produce reliable

estimates is limited [5]. As an example, Figure 1 shows the

PM2.5 predictions from IDW over a target area in Los Angeles

County. IDW generates a smooth prediction surface over the

region, which only offers a general idea about the variation

of the PM2.5 concentrations at a coarse spatial scale (e.g., the

Los Angeles downtown area has poorer air quality level than

other areas).

More sophisticated prediction technologies statistically in-

vestigate the direct correlations between the time-series ob-

servations and the environmental characteristics to infer spa-

tiotemporal variations of the underlying phenomena. These

technologies can use the identified correlations to explain

the prediction results; however, they usually require expert-

domain knowledge to decide useful predictors from a variety

of environmental characteristics (i.e., independent variables).

For example, for air quality prediction, one popular approach

to predict long-term spatial variations in air pollution levels

is land-use regression (LUR) [4, 16, 17, 18]. LUR leverages

expert-selected environmental factors, including various types

of geographical features (e.g., commercial and industrial),

traffic conditions, population density, and meteorological data,

for modeling each combination of study areas (e.g., Los

Angeles County), pollutant types (e.g., PM2.5), and spatiotem-

poral scales (e.g., daily average concentrations). For the LUR-

type of method, the expert-selected environmental factors can

change significantly across study areas. Table I provides three

example cases of LUR using varying independent variables

and spatial buffer sizes for separate study areas and pollutants.

This makes LUR-type approaches highly localized and vul-

nerable to inaccuracies when applied to heterogeneous study

areas. Furthermore, models for different geographic regions
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(a) Target area (b) IDW prediction results

Fig. 1. (a) The target prediction region covering an area of 50km×40km in Los Angeles (b) The aggregated prediction results of PM2.5 concentrations in
November with 500m×500m resolution using IDW

require expert-selected location characteristics before model

fitting to achieve the best regression results (e.g., distance to

the ocean has a high correlation to air quality in San Diego

but not in every coastal city).

Another example of using expert-selected sets of environ-

mental characteristics for prediction is the U.S. Federal High-

way Administration (FHWA) Traffic Noise Model (TNM2.5)

for the prediction of ambient environmental noise. Ambient

environmental noise is an understudied risk factor that has

been associated deleterious human mental and physical health

[19]. While noise itself can be considered as an independent

contributor to health risk [20], examined in a multi-pollutant

context it has been shown to amplify the physical health

effects associated with exposure to air pollution, including

respiratory health [21], stress [22], and obesity [23]. The

current practice for ambient noise modeling relies heavily

on the use of deterministic acoustic models such as TNM2.5

(Figure 2). Such models require pre-defined inputs on roadway

locations, type, fleet composition and traffic volumes, and tai-

lored for assessing traffic noise for policy compliance related

to highway policy.

In contrast to the methods that require expert domain

knowledge, data-driven approaches using machine learning

approaches, such as linear regression and random forests,

enable us to identify the critical predictors by learning the

feature weights (e.g., [5]). However, these algorithms usually

fail to achieve a reliable performance due to their limitation

Fig. 2. TNM2.5 traffic-related noise estimates over Southern California

on learning the complex interactions between environmental

features and the spatiotemporal phenomena. For example, for

traffic volume prediction, the traffic conditions rely on not only

spatial features (e.g., if there is a commercial area nearby) but

also temporal features (e.g., workday or weekend).

Advanced machine learning approaches, e.g., deep learning

models, coupled with the increasing availability of big data

describing the environment, become popular in dealing with
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TABLE I
EXAMPLE LAND-USE REGRESSION STUDIES

Reference Study area Pollutant Selected variables Buffer sizes

Moore et al. [16] Los Angeles, USA PM2.5 Land uses, traffic volume, population,

distance to the ocean, elevation

50-5,000m

Franklin et al. [17] Southern California, USA NO, NO2 Distance to roads, traffic volume,

population, elevation, land uses

300m

Wu et al. [18] Beijing, China PM2.5 Road length, land uses, population,

bus stops, intersections

100-3,000m

the prediction problem of location-dependent time-series data

from a data-driven perspective. These methods are generally

not explainable since they often directly adopt raw data

features, such as weather, road networks, and points of interest,

and expect the model to select and use the best features for the

prediction task automatically without generating interpretable

results (e.g., [13, 24, 25]).

There are some existing feature selection techniques, such

as Lasso [26] and Group Lasso [27], that can provide model

interpretation for deep learning models. Qi et al. [8] propose

an air quality prediction model that effectively removes the

redundant or irrelevant features by introducing an extra sparse

layer to minimize the Kullback–Leibler (KL) divergence be-

tween the weights and a vector of tiny values. However,

such regularization-type of feature selection methods only

examine the importance of individual features. Interpreting and

quantifying the interacting process between features, such as

the joint effect of wind speed and factory emission on PM2.5

concentrations, is still challenging.

To learn the interactions between the environmental char-

acteristics and their impacts on prediction values in an in-

terpretable way, one promising direction to provide model

interpretability is using variational autoencoders (VAE) (e.g.,

the beta VAE [28]) to generate factorized latent patterns in a

lower dimension. One advantage of variational autoencoders is

that it learns the distribution of the latent representations with

a vector of means, μ, and a vector of standard deviations, σ,

instead of directly outputting a condensed vector in traditional

autoencoders. Such distribution in the latent space can help

understand the compression process and relate the latent

features to the prediction results.

B. Modeling Spatiotemporal Dependencies

Spatiotemporal phenomena have strong spatial and tem-

poral dependencies that should be considered jointly for ac-

curate prediction. For example, current air quality is highly

correlated with current and past surrounding environmental

characteristics and is also influenced by the conditions from

neighboring locations. Traffic volumes are related to the road

features in the current cell and also affected by the information

from neighboring cells such as the upstreaming traffic flow.

We define these spatiotemporal impacts as the joint effects of

features referenced in both space and time. For example, if

a South-West power plant emits pollution at time T (Figure

3(a)), the North-East cells can be significantly polluted at T+1
with a North-East wind direction.

Existing prediction methods often overlook complex spatial

and temporal variations in the interactions between the obser-

vations and external contextual data about the environment.

For example, ordinary Kriging and LUR build prediction

models for individual time points without considering temporal

dependencies, i.e., either linear patterns (e.g., Figure 4(a))

or non-linear patterns (e.g., 4(b)) in the time-series data.

Besides, Zheng et al. [13] propose a method that trains separate

classifiers for spatial and temporal features and augments

predictions via a co-training mechanism. However, separate

models cannot effectively capture complex spatiotemporal

interactions, such as emission patterns that diffuse over space

with a high wind speed in short time frames.

With enough training data, deep learning technologies pro-

vide useful tools for modeling both spatial and temporal

dependencies in the input data and their relationships to the

prediction values. For modeling spatial dependencies, com-

puter vision models commonly use convolution operations

in convolutional neural networks (CNN) to extract important

salient information from neighboring pixels [29]. One advan-

tage of using convolution operations for location-dependent

data is that convolution retains the positional relationships

between data cells and is less computationally expensive

than graph-based approaches (e.g., graph convolutional neural

networks [30, 31]). For example, the influence of the left

cell on the center cell should be heavier than the influence

of the right cell when the wind direction is to the left. For

modeling the temporal dependency, recurrent neural network

(RNN) performs better than traditional models by automati-

cally computing the information passing to the next time step

in the sequence and using the final stored memory to make

decisions (e.g., [6]).

To jointly model the spatiotemporal dependencies in the

location-dependent time-series data, Shi et al. [32] propose the

Conv-LSTM that adds the convolution operation directly in the

recurrent neural network. For example, in Figure 3(b), when

predicting the air quality value for the center cell (red box)

by considering one-step neighbors (in the purple dotted box),

the model should learn the interactive effects from the North-

East green areas, the North-West residential areas, the South-

East industrial areas, and the East commercial areas. Using the
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(a) A factory emission at time T

(b) Considering one-step neighbors

Fig. 3. An example of spatiotemporal effects. The cell size is 500m×500m.
(a) A pollution emission releases from South-West power plant at time T ,
and its North-East cells can be polluted at time T + 1 with the North-East
wind, and (b) The red box is the target cell and the purple dotted box contains
environment characteristics of the one-step neighbors.

Conv-LSTM operation, the model learns useful information

from the combination of the current latent embedding (i.e.,

the interactive effects) of the selected features from neighbors

and the previous hidden memory.

One challenge here is that the spatial extent is not well

defined and cannot be learned in a plain Conv-LSTM opera-

tion. Models using multiple Conv-LSTM layers with various

convolution kernel sizes can learn the impacts from the neigh-

bors within various distances. For example, if the kernel size

is three and the cell size is 500m×500m, the model looks

at one-step neighbors within approximately 500m. Similarly,

for a kernel size of five, the model learns the information

from two-step neighbors within approximately 1,000m. The

outputs of these multiple Conv-LSTM layers can then be

concatenated and fed to the fully connected layers to generate

final predictions. However, how to enable the network to learn

(a) Linear patterns

(b) Non-linear patterns

Fig. 4. Examples of temporal variations of PM2.5 concentrations. (a) linear
patterns in late January 2017 and 2018, and (b) non-linear patterns in late
August 2017 and 2018.

and focus on an appropriate kernel size or multiple kernel

sizes is still an open research problem for spatiotemporal

predictions. Computer vision approaches, such as the inception

module [33], could help address this problem. The idea of the

inception module is that instead of using a convolutional filter

of fixed size, the network can learn to select the most effective

kernels from filters of varying sizes and combine the image

features learned from these kernels.

Another challenge is that the prediction model needs to

take into account the fact that some cells should not contain

prediction results (e.g., traffic volumes only occur in the cells

with road features). Such data constraint (e.g., the traffic-road

dependency) can be learned from the “No Data” (or null) cells

in the grid and their nearby cells with some attention-based

convolution layers. In this way, the model will be able to

handle spatiotemporal phenomena that only occur in specific

areas of the grid (e.g., traffic occurs only on roads).

C. Handling Sparse Observations

In real world prediction problems, the input data usually

contain abundant explanatory variables (i.e., large feature

vectors of contextual data) but limited observations. As an

example, for air quality monitoring, in the Greater Los Angeles

area, there are more than 13 million people within an area

of approximately 30,000 square miles but only around 25

regulatory air quality monitoring stations (measuring multiple

air pollutants) established by the U.S. Environmental Protec-

tion Agency (EPA). The sparse measurement locations largely
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limit the diversity of learnable environmental effects. More

recently, low-cost sensors, such as PurpleAir, provide a more

widespread network that captures finer spatial and temporal

variability than Federal- and State-operated monitoring net-

works [34]. However, there remain limitations in terms of

proper sensor installation, calibration, and maintenance which

can leave some areas without reliable data. For example,

Figure 5(a) shows the PurpleAir sensor locations covering an

area of 2,000 square meters in Los Angeles, where sensors in

the western coastal region are clustered together while sensors

in the West-North region are scattered. As a result, the spatial

coverage cannot satisfy the needs of the studies that require

close tracking of exposure-response relationships (e.g., [3]).

Another example is the fixed traffic sensors that usually

provide minute-level information about real-time and histor-

ical traffic volumes and flows in urban areas. These sensor

measurements are critical inputs to air and noise pollution

models [35, 36, 37]. While temporally resolved, traffic sensors

are generally only on freeways and major arterials, with

scant coverage of most primary, secondary, and residential

roads. Using sensor-based traffic data in environmental ex-

posure estimation has been an ongoing challenge due to these

limitations. Figure 5(b) shows the locations of more than

9,000 traffic sensors covering highways and major roads in

Los Angeles, many minor roads in populous areas such as

Glendale, Burbank, and Huntington Park, but overall poor

sensor coverage in Long Beach [1].

Semi-supervised learning methods can address the challenge

of sparse sensors using deep neural networks by utilizing

labeled samples (locations with an observation) together with

the information from unlabeled samples (locations without an

observation) to improve the model performance [7]. There are

many types of semi-supervised learning methods, e.g., smooth-

ness regularization [8], co-training [13], and the generative

mixture models with EM algorithm (see more details in [38]).

Smoothness regularization assumes that samples close in

space and time have a high chance to share similar values.

Thus, the loss function of the deep neural networks usually

consists of the prediction accuracy calculated using the la-

beled data and the smoothness of predictions on neighboring

samples:

L =
∑

i

L̄(pi, qi) + λ
∑

i

∑

j∈Ni

WijL̄(pi, pj) (1)

where pi and qi are the predicted value and true label for

sample i. Ni contains the neighbors of the sample i over space

and time, and Wij defines the spatial proximity or temporal

similarity between sample i and j. L̄ is the risk function,

e.g., mean square error (MSE). Here, λ is a hyper-parameter.

During the training process, the model minimizes the loss

function (Equation 1) to avoid focusing on only labeled data.

The smoothness regularization is simple and intuitive but

might not be adaptable when the assumption on neighboring

smoothness is invalid. Another challenge here is to adjust the

hyper-parameters that 1) specify how close in space and time

the prediction values should be similar and 2) incorporate

the semi-supervised loss function with other loss functions in

the entire network. For the first challenge, empirical methods

typically work the best (e.g., setting fixed weights in space and

time using k-fold cross-validation). For the second challenge,

dynamic weight adjustments (e.g., [39, 40]) might overcome

this problem by taking the sub-model uncertainty into account

and improve model generalization for heterogeneous predic-

tion domains.

Co-training is another semi-supervised learning approach

that continuously augments the training set by selecting sam-

ples with the highest confidence from the prediction results.

Zheng et al. [13] leverage the co-training technique for air

quality prediction task by iteratively adding the most confident

predictions from a spatial classifier and a temporal classifier

into the training set. However, the disadvantage is that the

method relies heavily on accurate model predictions from

previous steps. Adding a highly confident but inaccurate

prediction into the training set might propagate the errors,

which further results in poor performance. Additionally, the

computational cost is much higher than smoothness regulariza-

tion since the model needs to be re-trained with “new” training

samples at each iteration.

III. SUMMARY

The location of things in space and how they change over

time is the key to understand complex environmental phenom-

ena as well as human-environmental interactions in the past,

present, and future (e.g., [41]). This paper presented a vision

of a general machine learning framework for explainable, fine-

scale prediction of environmental phenomena, represented in

location-dependent time-series data. The resulting framework

will enable fine spatial and temporal scale environmental ex-

posure assessment and allow researchers to carry out unprece-

dented inquiries, such as understanding relationships between

health outcomes and long-term exposure histories.
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