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Chapter 1
Introduction

Abstract Historical maps are fascinating to look at and contain valuable retro-
spective place information difficult to find elsewhere. However, the full potential of
historical maps has not been realized because the users of scanned historical maps
and the developers of digital map processing technologies are from a wide range of
disciplines and often work in silos. This book aims to make the first connection
between the map user community and the developers of digital map processing
technologies by illustrating several applications, challenges, and best practices in
working with historical maps. This chapter presents a brief introduction to various
types of historical maps and the scientific studies that could benefit from using them.
Further, the chapter summarizes the general considerations critical for building
successful computational processes that can be used to analyze historical map
content. Finally, the chapter provides an overview of the book structure, describing
the connections between individual chapters.

1.1 Book Objectives

Ever since the prehistorical times, various forms of maps represent an important
medium for visual communication about human-made elements, human activities,
and natural phenomena on Earth (or in the sky) as well as their spatial relationships.1

Between cave paintings to Google Maps, the idea of mapmaking has gone from
flat Earth to numerous spatial reference systems, and the purpose of maps has
progressed from storytelling to navigation. During the period of hundreds and
thousands of years, mapmakers (cartographers) have produced a significant amount
of maps. For example, in 1502, Leonardo da Vinci created the Imola town plan
(Fig. 1.1) [BF07], which is arguably the first scientifically measured map (or
ichnographic) [BL14]. Although produced with simple measuring tools by today’s
standard, the da Vinci’s Imola map still mostly matches the current street layout

1The reader is referred to the multi-volume book [HWL87] for a grand overview of map making
(cartography) from prehistorical times to the twentieth century.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
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2 1 Introduction

Fig. 1.1 Town plan of Imola, Italy, Leonardo da Vinci (circa 1502) (source: https://upload.
wikimedia.org/wikipedia/commons/d/d1/Leonardo_da_vinci%2C_Town_plan_of_Imola.jpg)

in Imola after more than 500 years. This map of Imola and many other similar
historical city plans open a window for current day researchers to look at cities in
the distant past while special considerations of epistemological changes [Har87] and
metric accuracy [BL14] must be taken into account.

Fast forward to the twentieth century, more recent historical maps were cre-
ated with modern technologies such as geodetic measuring technologies, satellite
imagery and aerial photos (as a reference source), and even the Global Positioning
System (GPS), but these maps still mostly exist only in paper format.2 For example,
during the World War II (WWII), the Great Britain War Office and United States
Army Map Service (AMS) together created numerous paper maps covering a large
amount of Earth surface with abundant retrospective information about places.
Other map publishers, such as the Polish Centrum Kartografii, also offer pre-
and post-WWII maps (in paper format) of Europe with a comprehensive list of
retrospective place names including towns, monuments, etc. In the USA, the US
Geological Survey (USGS) historical topographic maps (1884–2006) contain pro-
fessionally surveyed geographic features of detailed natural and manmade objects,

2Professional cartographers would engrave map features on several metal plates and then combine
them to print the maps with each plate using an appropriate color ink (e.g., brown for topographic
contour lines and black for text labels and roads.)

https://upload.wikimedia.org/wikipedia/commons/d/d1/Leonardo_da_vinci%2C_Town_plan_of_Imola.jpg
https://upload.wikimedia.org/wikipedia/commons/d/d1/Leonardo_da_vinci%2C_Town_plan_of_Imola.jpg
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Fig. 1.2 Historical USGS topographic maps: (top) Los Angeles, CA (1:24K) (circa 1931),
(bottom) San Bernardino, CA (1:250K) (circa 1966). (a) Roads and buildings (black). (b) Urban
areas (orange), roads (red), railroads (black)

such as mountains, lakes, rivers, vegetation, buildings, transportation networks, and
place names as well as boundaries of political and urban areas (Fig. 1.2). These
recent maps can contain very detailed retrospective place information about the past
landscape. As another example, Fig. 1.3 shows two sample sections of the Sanborn
Fire Insurance Map archived in the United States Library of Congress. The Sanborn
maps provide detailed retrospective place information such as the prevailing wind
speed and direction of the city, business locations and types, building outlines, and
building materials.
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Fig. 1.3 Sanborn Fire Insurance Map from Alhambra, Los Angeles County, California (source:
https://www.loc.gov/resource/g4364am.g4364am_g003761890/). (a) Information about the city
population, water facilities, and prevailing winds (direction and speed). (b) Detailed building
information, including business types and materials (red: bricks, brown: adobe), etc.

https://www.loc.gov/resource/g4364am.g4364am_g003761890/
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Fig. 1.4 The number of published papers per year using the search keywords “historical maps,”
“change” and “analysis” on Google Scholar

Today, online map archives and libraries such as the David Rumsey Map
Collection3 and the United States Library of Congress’s digital map collection4

store a large number of historical maps in either paper or scanned format. These
historical maps have the potential to unlock unique research opportunities in various
disciplines in the social and natural sciences. For example, historical map series such
as the USGS historical topographic maps5 provide thousands of maps with detailed
retrospective place information covering large, national scale geographic areas and
long time periods. Figure 1.4 illustrates the broad potential for scientific studies
using historical map data: searching Google Scholar using the keywords “historical
maps,” “change,” and “analysis” returns about 15,700 results of which around
13,020 appeared after 2001. These results include top-ranked scientific journals
such as Nature, Remote Sensing of Environment, Ecology, Global Change Biology,
Landscape and Urban Planning, Landscape Ecology, Land Use Policy, Journal
of Glaciology, Environment and Planning B, Forest Ecology and Management,
Agriculture, Applied Geography, and Journal of Coastal Research. Since geographic
(or place) information is an important component that links heterogeneous data
used in many academic disciplines and application domains [Jan+12, Get+11],
detailed information about places and their changes is crucial for studies in
sociology (e.g., [Kur13]), cancer and environmental epidemiology (e.g., [Mac04]),
urbanization, biodiversity (e.g., Hill et al. [Hil+09]), human disease (e.g., [Yos+14]),

3http://www.davidrumsey.com/.
4https://www.loc.gov/collections/?fa=original-format:map.
5http://ngmdb.usgs.gov/maps/TopoView/.

http://www.davidrumsey.com/
https://www.loc.gov/collections/?fa=original-format:map
http://ngmdb.usgs.gov/maps/TopoView/


6 1 Introduction

and biology (e.g., [Dav+15, Lav13, Vel+13]). These recent studies illustrate the vast
diversity of scientific investigations using historical maps, indicating that a broad
interdisciplinary research community will benefit from harnessing massive and
heterogeneous map data to enable new forms of data-intensive research. Also, the
tools that allow efficiently and effectively converting large amounts of historical map
scans into structured databases will help researchers and map curators to transform
their map collections into a useful format for geospatial analysis.

While the computer science and geographic information science community has
been developing technologies for automatic and semi-automatic map understanding
(digital map processing) for almost 40 years [CLK14], currently the mainstream
method for making historical maps useful in scientific studies still relies on manual
digitization with very little help from intelligent algorithms or systems. Therefore,
the potential of historical maps has not been fully realized. For example, most land-
change analyses involving pre-1970 data6 often rely on manual map digitization
and thus are constrained to study areas covered by very few maps [Kie93, PL02,
Die+05, KET07, Ste+10]. Although many historical maps are now in digital format
as scanned images, systematic exploration of their contents requires robust, efficient
digital map processing technologies for the extraction and conversion of image data
into a format that allows meaningful analysis in a geographic information system
(GIS). Also, these computational technologies need to be developed collaboratively
with the users of historical maps so that the users can easily adopt new technologies
and use them in their work.7 Because of the disconnection between the users
and developers of digital map processing technologies, very often, digital map
processing is thought of as a black box that can only process specific types of map
images and require advanced knowledge in image processing and computer vision
to operate. This unfortunate disconnect could be a result of a dispersed digital map
processing community within computer science and geographic information science
and the diverse user communities spread across a broad range of disciplines.

This book intends to provide an introduction of the current applications, chal-
lenges, and best practices of digital map processing technologies aiming to illustrate
what to expect in dealing with historical maps using computational methods for
both the user of historical map content and the developer of digital map processing
technologies. The goal is to bring together the communities that have an implicit
interest in historical maps with the hope of making widely available the valuable
content that is difficult to find anywhere else but remains “locked” in cartographic
documents.

6The first Landsat satellite was operational in the 1970s.
7For example, a map processing system for text recognition requiring the user to first collect
thousands of text samples from their maps for training is impractical for a scientist who wants
to process two map scans from the sixteenth century.
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1.2 Book Structure

The remainder of this book is structured as follows: Chapter 2 first presents a
variety of existing applications of historical maps to demonstrate varying needs
for processing historical maps in scientific studies (e.g., thousands of historical
maps from a map series vs. a few historical maps from various publishers and
with different cartographic styles). Chapter 2 also describes case studies introducing
typical types of semi-automatic and automatic digital map processing technologies.
The case studies showcase the strengths and weaknesses of semi-automatic and
automatic approaches by testing them in a symbol recognition task on the same
scanned map.

Chapter 3 presents the technical challenges and trends in building a map
processing, modeling, linking, and publishing framework. The framework will
enable querying historical map collections as a unified and structured spatiotemporal
source in which individual geographic phenomena (extracted from maps) are
modeled (described) with semantic descriptions and linked to other data sources
(e.g., DBpedia, a structured version of Wikipedia).8

Chapter 4 dives into the recent advancement in deep learning technologies
and their applications on digital map processing. The chapter reviews existing
deep learning models for their capabilities on geographic feature extraction from
historical maps and compares different types of training strategies. A comprehensive
experiment is described to compare different models and their performance.

Chapter 5 closes the book with a brief summary.
Each chapter can be read individually, but the order of chapters in this book helps

the reader to first understand the “product requirements” of a successful digital map
processing system, then review the existing challenges and technologies, and finally
follow the more recent trend of deep learning applications for processing historical
maps.

References

[BF07] H. Ballon, D.H. Friedman, Portraying the city in early modern Europe: measurement,
representation, and planning, in The History of Cartography (University of Chicago
Press, Chicago, 2007), pp. 680–704

[BL14] V. Baiocchi, K. Lelo, Assessing the accuracy of historical maps of cities: methods and
problems. Citta e Storia 9(1), 61–89 (2014)

[CLK14] Y.-Y. Chiang, S. Leyk, C.A. Knoblock, A survey of digital map processing techniques.
ACM Comput. Surv. 47(1), 1–44 (2014). https://doi.org/10.1145/2557423. ISSN: 0360-
0300

[Dav+15] C.C. Davis, C.G. Willis, B. Connolly, C. Kelly, A.M. Ellison, Herbarium records are
reliable sources of phenological change driven by climate and provide novel insights

8https://wiki.dbpedia.org.

https://doi.org/10.1145/2557423
https://wiki.dbpedia.org


8 1 Introduction

into species’ phenological cueing mechanisms. Am. J. Bot. 102(10), 1599–1609 (2015).
https://doi.org/10.3732/ajb.1500237. ISSN: 0002-9122, 1537-2197

[Die+05] C. Dietzel, M. Herold, J.J. Hemphill, K.C. Clarke, Spatiotemporal dynamics in
California’s central valley: empirical links to urban theory. Int. J. Geogr. Inf. Sci. 19(2),
175–195 (2005). https://doi.org/10.1080/13658810410001713407

[Get+11] A. Getis, M. Goodchild, N. Lam, C. Merry, T. Nyerges, H. Onsrud, B. Plewe, K.
Stewart, L. Usery, A framework for the future of the spatial sciences, in 2011 Workshop
on the Future of the Spatial Sciences (2011)

[Har87] J.B. Harley, The map and the development of the history of cartography, in The History
of Cartography. Volume 1: Cartography in Prehistoric, Ancient, and Medieval Europe
and the Mediterranean (University of Chicago Press, Chicago, 1987)

[Hil+09] A.W. Hill, R. Guralnick, P. Flemons, R. Beaman, J. Wieczorek, A. Ranipeta, V. Chavan,
D. Remsen, Location, location, location: utilizing pipelines and services to more
effectively georeference the world’s biodiversity data. BMC Bioinformat. 10(suppl 14),
S3 (2009). https://doi.org/10.1186/1471-2105-10-S14-S3. ISSN: 1471-2105

[HWL87] J.B. Harley, D. Woodward, G.M. Lewis, The History of Cartography, vol. 1 (University
of Chicago Press, Chicago, 1987)

[Jan+12] K. Janowicz, S. Scheider, T. Pehle, G. Hart, Geospatial semantics and linked spatiotem-
poral data – past, present, and future. Semantic Web 34, 321–332 (2012). https://doi.
org/10.3233/SW-2012-0077

[KET07] J. Kozak, C. Estreguil, M. Troll, Forest cover changes in the northern Carpathians in
the 20th century: a slow transition. J. Land Use Sci. 2, 127–146 (2007). https://doi.org/
10.1080/17474230701218244

[Kie93] F. Kienast, Analysis of historic landscape patterns with a Geographical Information
System — a methodological outline. Landsc. Ecol. 8(2), 103–118 (1993). https://doi.
org/10.1007/BF00141590. ISSN: 1572-9761

[Kur13] L. Kurashige, Rethinking anti-immigrant racism: lessons from the Los Angeles vote on
the 1920 Alien land law. Southern California Quart. 95(3), 265–283 (2013). https://doi.
org/10.1525/scq.2013.95.3.265. ISSN: 0038-3929

[Lav13] C. Lavoie, Biological collections in an ever changing world: herbaria as tools for
biogeographical and environmental studies. Perspect. Plant Ecol. Evol. Systemat. 15(1),
68–76 (2013). https://doi.org/10.1016/j.ppees.2012.10.002. ISSN: 1433-8319

[Mac04] T.M. Mack, Cancers in the Urban Environment (Elsevier Science, Amsterdam, 2004).
ISBN: 9780080528465

[PL02] C. Petit, E. Lambin, Impact of data integration technique on historical land-
use/land-cover change: comparing historical maps with remote sensing data in the
Belgian Ardennes. Landsc. Ecol. 172, 117–132 (2002). https://doi.org/10.1023/A:
1016599627798. ISSN: 1572-9761

[Ste+10] E.D. Stein, S. Dark, T. Longcore, R. Grossinger, N. Hall, M. Beland, Historical ecology
as a tool for assessing landscape change and informing wetland restoration priorities.
Wetlands 30(3), 589–601 (2010)

[Vel+13] M. Vellend, C.D. Brown, H.M. Kharouba, J.L. McCune, I.H. Myers-Smith, Historical
ecology: using unconventional data sources to test for effects of global environmental
change. Am. J. Bot. 100(7), 1294–1305 (2013). https://doi.org/10.3732/ajb.1200503.
ISSN: 0002-9122, 1537–2197

[Yos+14] K. Yoshida, H.A. Burbano, J. Krause, M. Thines, D. Weigel, S. Kamoun, Mining
herbaria for plant pathogen genomes: back to the future. PLoS Pathog. 10(4), e1004028
(2014). https://doi.org/10.1371/journal.ppat.1004028. ISSN: 1553-7366, 1553-7374

https://doi.org/10.3732/ajb.1500237
https://doi.org/10.1080/13658810410001713407
https://doi.org/10.1186/1471-2105-10-S14-S3
https://doi.org/10.3233/SW-2012-0077
https://doi.org/10.3233/SW-2012-0077
https://doi.org/10.1080/17474230701218244
https://doi.org/10.1080/17474230701218244
https://doi.org/10.1007/BF00141590
https://doi.org/10.1007/BF00141590
https://doi.org/10.1525/scq.2013.95.3.265
https://doi.org/10.1525/scq.2013.95.3.265
https://doi.org/10.1016/j.ppees.2012.10.002
https://doi.org/10.1023/A:1016599627798
https://doi.org/10.1023/A:1016599627798
https://doi.org/10.3732/ajb.1200503
https://doi.org/10.1371/journal.ppat.1004028


Chapter 2
Historical Map Applications
and Processing Technologies

Abstract Digital map processing has been an interest in the computer science
and geographic information science communities since the early 1980s. With the
increase of available map scans, a variety of researchers in the natural and social
sciences developed a growing interest in using historical maps in their studies. The
lack of an understanding of how historical maps can be used in research and the
capabilities of map processing technologies creates a significant gap between the
wide range of communities that could benefit from the advances in digital map
processing technologies and the disciplines in which the technologies are developed.
As a result, researchers who intend to use historical maps in their studies still
need a significant amount of resources to digitize their maps, while the existing
digital map processing technologies are difficult to apply and understand and thus
do not look promising. In many cases, existing digital map processing technolo-
gies could help facilitate the digitization process, and it just requires additional
knowledge to select an appropriate technology given the problem scope (e.g., the
number of maps for processing, map conditions, and style varieties). The result
is that researchers waste time and resources building and testing various systems
that partially duplicate prior work and cannot fully use the potential of existing
technology. This chapter presents real-world applications of historical maps and
case studies of both semi-automatic and fully automatic approaches for geographic
feature extraction from historical maps. These real-world applications illustrate
and exemplify various needs and scopes of using historical maps in scientific
studies (e.g., processing thousands of historical maps from a map series vs. a few
historical maps from various publishers and with different cartographic styles).
The two example map processing technologies described help understand current
strengths and weaknesses. These examples also illustrate tremendous collaboration
opportunities between and beyond the computer science and geographic information
science communities to build advanced map processing technologies that are more
effective in transforming the scientific studies that use historical maps.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
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2.1 Introduction

Historical maps are an irreplaceable primary source of geographical and political
information in the past (e.g., historical place names, landmarks, natural features,
transportation networks, and war, trade, and diplomacy networks). For example, the
Mappa Mundi by Fra Mauro (circa 1450) (Fig. 2.1) contains not only place names
but also provides

. . . natural philosophy, description of places and people, commercial geography, history,
navigation and direction of expansion, and, finally, on what we can nowadays call
methodological issues. In addition, Fra Mauro’s world map also includes hundreds of
images, representing cities, temples, funerary monuments, streets, and ships, as well as
a scene in the lower left corner representing Earthly Paradise. [Nan+15, pg. 160]

Fig. 2.1 East Asia Mainland of the Mappa Mundi (circa 1450), Fra Mauro
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In many cases, historical maps are also the only source that provides profession-
ally surveyed historical geographic data. Map archives such as the US Geological
Survey (USGS) National Geologic Map Database,1 USGS Topographic Maps,2

David Rumsey Map Collection,3 OldMapsOnline.org,4 and the National Library
of Scotland5 together store millions of this type of historical map in either paper or
scanned formats. For example, between 1884 and 2006, the USGS has created over
200,000 topographic maps. According to the USGS, in the USA, these topographic
maps

. . . portray both natural and manmade features. These maps show and name works of nature
including mountains, valleys, plains, lakes, rivers, and vegetation. They also identify the
principal works of man, such as roads, boundaries, transmission lines, and major buildings.6

The USGS National Geospatial Program has scanned these historical paper maps.
Collectively, these publicly available scanned maps portray the evolution of the
American landscape over a 125-year period. Similar map series exist in many
countries, e.g., the Ordnance Survey maps in the UK archived by the National
Library of Scotland. In this case of more recent historical maps produced using
modern geospatial survey technologies (e.g., the USGS Topographic Map series,
Ordnance Survey six-inch series, and other national agency series dated from the
early 1800), the detailed map data on the states of landscapes in the past are
essential for understanding the causes and consequences of environmental change
and support a variety of natural and social studies on topics such as cancer and
environmental epidemiology, urbanization, biodiversity, landscape changes, and
history.7 However, many of these historical maps are not georeferenced, and almost
all historical maps have content that is not machine-readable.

With the exponential growth of available map scans stored and maintained
in digital archives and on the Internet, a variety of disciplines in the natural
and social sciences developed a growing interest in using historical maps in
their studies. To make historical maps usable in an analytic environment (e.g.,
a Geographic Information System, GIS), the computer science and geographic
information science communities have been developing computational methods
for the extraction and recognition of the content from images of maps since the
early 1980s [CLK14], but the existing map processing technologies are still limited
in processing a large number and variety of map images.8 Today, a researcher
can spend a great deal of time and effort searching and cross-referencing data

1http://ngmdb.usgs.gov/ngmdb/ngmdb_home.html.
2http://ngmdb.usgs.gov/maps/TopoView/.
3http://www.davidrumsey.com/.
4http://www.oldmapsonline.org/.
5http://maps.nls.uk/.
6https://pubs.usgs.gov/gip/topomapping/topo.html.
7The reader is referred to [Gre+15] for more examples and methodologies in historical geographic
information systems (GISs).
8The reader is referred to [CLK14] and [Chi+16] for detailed reviews on map processing
techniques and systems.

http://ngmdb.usgs.gov/ngmdb/ngmdb_home.html
http://ngmdb.usgs.gov/maps/TopoView/
http://www.davidrumsey.com/
http://www.oldmapsonline.org/
http://maps.nls.uk/
https://pubs.usgs.gov/gip/topomapping/topo.html


12 2 Historical Map Applications and Processing Technologies

sources to find relevant maps. Then they need to select the most efficient and
effective method to digitize the maps for converting the map content to a machine-
readable format (e.g., [GE15, Nan+15]). The researcher may need to search in
various data repositories, map repositories, search engines, and even when they have
identified the map(s), it just requires additional knowledge to select an appropriate
technology for map digitization given the problem scope (e.g., the number of
maps for processing, map conditions and varieties). Consequently, the mainstream
method for map digitization is still manual digitization using a GIS or image
processing software. These challenges in working with historical maps present
an enormous collaboration opportunity for the computer science and geographic
information science communities to build advanced map processing technologies
for transforming the scientific studies that currently use limited content from
only a small percentage of available historical maps. Therefore, it is important to
understand the current landscape of existing and potential applications of historical
maps and the types of technologies that can be used to support these applications.

This chapter presents real-world applications of historical maps in scientific
studies and case studies of semi-automatic and fully automatic geographic feature
extraction from historical maps, aiming to bridge the gap between the users and
developers of map processing technologies. This chapter first presents the potentials
and real-world applications of historical maps in a variety of studies, including
topics in natural and social sciences. These applications demonstrate various types
of requirements for historical maps in scientific studies. For example, some studies
require processing only a few maps, but these maps can come from multiple
sources and have very different cartographic styles. This type of work can take
advantages of semi-automatic map processing algorithms and systems that need
some user intervention steps but can process a wide variety of maps. Other studies
might need to process hundreds of historical maps from the same map series in an
archive to understand the long-term changes in the landscape. This type of work
can use automatic processing algorithms and systems that can be trained in a one-
time training effort using appropriate training data. Following on the discussion of
historical map applications, this chapter then presents two case studies on a similar
application to demonstrate the strengths and weaknesses of typical types of semi-
automatic and fully automatic map processing technologies.

The remainder of this chapter9 is structured as follows: Section 2.2 describes
the potentials and real-world applications of historical maps in a variety of studies,
including topics in the natural and social sciences. Section 2.3.1 presents a case
study on semi-automatic technologies for extracting geographic features from his-
torical maps. Semi-automatic technologies require some user intervention steps but
are often more robust than fully automatic map processing systems. Section 2.3.2
presents a second case study on extracting geographic features from historical

9This chapter is based on the materials in [Chi17b] with major extensions of case studies on
geographic feature extraction applications.
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maps with context-based, fully automatic technologies. Section 2.4 summarizes the
chapter and discusses future work.

2.2 Applications of Historical Maps

Historical data archives (e.g., museum and herbaria collections, digital photog-
raphy and newspaper archives) support a variety of scientific studies in natural
science on topics such as biodiversity (e.g., [Hil+09]), evolutionary biology (e.g.,
[Lav13]), human disease (e.g., [Yos+14]), plant biology [Dav+15, Vel+13], and
ecology (e.g., [New10, PE10]), but geolocating the historical localities mentioned
in archives (e.g., Calflora Observation Database10 and the Global Biodiversity
Information Facility [Sam+13]) is challenging and very often a tedious manual
process using historical maps. Murphey et al. [Mur+04] reviewed the problems
in georeferencing museum collections. They compared several geoparsing tools
including the GEOLocate [RB10] and BioGeomancer [Gur+06] for converting text
descriptions to locations. Since then, a variety of advanced algorithms for geop-
arsing has been proposed (e.g., [LL11]) and open-source software packages (e.g.,
CLAVIN,11 CLIFF [DBZ], and the Edinburgh Geoparser [Ale+15]) are available.
These algorithms and tools are widely used in geolocating places in the unstructured
text and used in spatial humanities research (e.g., [Gre+15]). However, these tools
need a “gold data” gazetteer to provide the location information of recognized place
names, and the lack of historical reference gazetteers remains a challenge. The result
is that even if the geoparsing software can correctly identify a historical name as a
geolocation reference in the unstructured text, the geocoordinates of the historical
name is still unknown if the place name no longer exists.

To locate the place names that no longer exist in contemporary data sources,
a researcher needs to search and cross-reference a variety of data sources such
as archives of historical maps, newspapers, and photography. For example, a
data record in an online database of California herbarium specimens describes
an August 16th, 1902 observation of Artemisia douglasiana (California mugwort)
at the location “near Mesmer” in Los Angeles. The place name Mesmer near
or within both the City and County of Los Angeles no longer exists in the
contemporary geographic data sources, including authoritative sources like the US
Census12 and USGS GNIS (the United States Geological Survey Geographic Names
Information System)13 and open sources, such as GeoNames,14 OpenStreetMap,15

10http://www.calflora.org/.
11https://clavin.bericotechnologies.com/.
12https://www.census.gov/geo/maps-data/data/gazetteer.html.
13http://geonames.usgs.gov/.
14http://www.geonames.org/.
15https://www.openstreetmap.org/.

http://www.calflora.org/
https://clavin.bericotechnologies.com/
https://www.census.gov/geo/maps-data/data/gazetteer.html
http://geonames.usgs.gov/
http://www.geonames.org/
https://www.openstreetmap.org/
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Fig. 2.2 Map of the Mesmer city development

and Wikipedia. Searching “Mesmer” in the GeoNames gazetteer results in an airport
“Mesmer Airport” in New York and a street “Rue Mesmer” in Haiti. Neither of the
results helps to geolocate the observation of California mugwort in 1902. A Google
search with the keywords “Mesmer” and “Los Angeles” reveals a few interesting
facts that could be helpful for geolocating Mesmer. First, the search results include
a person, Louis Mesmer (1829–1900), who was a prominent businessman and
the owner of the famous US Hotel in Los Angeles. Because it was common to
name locations after well-known families (e.g., Wilshire, Hancock, and Doheny in
Southern California), Mesmer could be a place name in the Los Angeles area in the
past. Second, the search results contain a link to a map in the Los Angeles Public
Library collections showing a proposed development plan in 1924 for the “Mesmer
City” in Los Angeles (Fig. 2.2). At the time, Mesmer City was advertised as “In
the direct path of the Los Angeles’ growth toward the ocean.”16 This map further
narrows down the search space for Mesmer to somewhere nearby Culver City and
Baldwin Hills in Los Angeles. Together, the time and location information from
the search results points to the USGS topographic map that contains the Mesmer
in 1901 (Fig. 2.3). In this case, Mesmer is geolocated, but the entire process cannot
scale to handle thousands of records in an efficient manner.

Historical GIS (Geographic Information System) [GE07] could alleviate the
problem of geolocating historical locality references by providing a platform for
collecting datasets of historical place names, but the datasets are rarely available.
Even when historical gazetteers are available, their spatiotemporal coverage is often
sparse. For example, the US Census only provides post-2010 and 2000 and 1990
census gazetteer files. NHGIS (the National Historical Geographic Information
System at the Minnesota Population Center [Man+17])17 provides historical demog-
raphy data down to the census tract level but only a few place names. The Ramsay
Place Names File from the State Historical Society of Missouri provides a historical

16https://www.lapl.org/collections-resources/visual-collections/map-collection/.
17https://www.nhgis.org/.

https://www.lapl.org/collections-resources/visual-collections/map-collection/
https://www.nhgis.org/
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Fig. 2.3 The USGS historical topographic map shows the location of Mesmer. (Southern Califor-
nia sheet No. 1, circa 1901)

gazetteer covering locations in the State of Missouri from 1928 to 1945 [Ada28]. An
exceptional case is the website “A Vision of Britain through Time”18 from the GB
Historical GIS at the University of Portsmouth, which provides about two million
crowdsourced historical place names and other locality text in Great Britain dated
back in the early nineteenth century from the Ordnance Survey historical six-inch
map series (second edition, county series).

The above examples of historical inquiries show that the ability to automatically
use the textual content from a large number of historical maps as the locality
reference source (e.g., two million crowdsourced place names and locality text
from approximately 8000 maps) will be able to transform historical data records
in documents and collections into georeferenced datasets. This ability will enable
natural and social science researchers to efficiently find, query, and analyze a variety
of historical records by location.

As another example of the use of historical maps in scientific studies,
Kurashige [Kur13]19 used historical census data, voting records, and precinct
numbers and boundaries extracted from a 1920 map to study “who” (e.g.,
occupations and political parties) in Los Angeles voted for the 1920 California
Alien Land Law that discriminates against Japanese (Fig. 2.4).

Ngo et al. [NSC15] built a Web-based interactive visualization tool for historical
land reclamation records in Hong Kong.20 Ngo collected and manually digitized

18http://www.visionofbritain.org.uk/.
19Dr. Kurashige’s article published in the Southern California Quarterly won the 2015 Carl I.
Wheat Award for the best demonstration of scholarship in that journal from 2012–2014 by a senior
historian.
20This Web tool is among the top hits when searching for Hong Kong land reclamation on the
Google search engine: http://www.oldhkphoto.com/coast/.

http://www.visionofbritain.org.uk/
http://www.oldhkphoto.com/coast/
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Fig. 2.4 Automatically extracting precinct boundaries from a historical precinct map of Los
Angeles for analyzing historical voting records with demographic datasets (Figure adapted
from [Kur13])

(using Google Maps) several historical maps and land records, which were then
cross-referenced to create both the geometry and attributes (e.g., the year of land
reclamation) of the historical land reclamation records in Hong Kong (Fig. 2.5).
The historical maps and land records are from the Hong Kong Public Library
(Map Library Collection),21 the University of Hong Kong Libraries (Special
Collection),22 and the Hong Kong Lands Department.23 Figure 2.6 shows a sample
of the digitization results and the variety of historical maps used to recreate the land
reclamation records. The digitization results were also used to compile infographics
and maps to demonstrate coastline changes in Hong Kong [Yu14].

The Spatial Sciences Institute at the University of Southern California (USC)
collaborated with an insurance company to automatically read historical Ordnance
Survey maps (circa 1900–1970) covering the entire UK to identify likely locations
of subterranean contamination, such as factories, mines, quarries, and gas works
which no longer exist and otherwise would not be known today (Fig. 2.7).24

21https://www.hkpl.gov.hk/en/about-us/HKCL/services/map.html.
22https://lib.hku.hk/hkspc/.
23http://www.landsd.gov.hk/mapping/en/download/maps.htm.
24Spatial technology opens a window into history: https://news.usc.edu/91625/spatial-technology-
opens-a-window-into-history/.

https://www.hkpl.gov.hk/en/about-us/HKCL/services/map.html
https://lib.hku.hk/hkspc/
http://www.landsd.gov.hk/mapping/en/download/maps.htm
https://news.usc.edu/91625/spatial-technology-opens-a-window-into-history/
https://news.usc.edu/91625/spatial-technology-opens-a-window-into-history/
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Fig. 2.5 Building an interactive visualization of land reclamation in Hong Kong from historical
maps

Fig. 2.6 Using a variety of historical maps to recreate land reclamation records in Hong Kong

In a joint effort, the USC Shoah Foundation Visual History Archive (VHA)
and the USC Spatial Sciences Institute built a demonstration tool to link historical
maps to places mentioned in genocide survivors’ video testimonies in the VHA
archive [Chi17a]. These linkages enrich the personal stories of the survivors by
using the spatial and temporal context in historical maps to enable the viewers to
“go back in time” to recreate the physical world of the historical experience of the
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Fig. 2.7 Quarries and infill lands in a historical map and the contemporary satellite imagery

Fig. 2.8 Using historical maps to identify the wedding location (historical synagogue) described
by the Holocaust survivor, Murray Burger

survivors (Fig. 2.8).25 This work requires manually searching and going through
large numbers and varieties of historical maps to find the place names mentioned in
the interviews.

Nanetti et al. [Nan+15] manually transcribed and georeferenced the textual
content in the Mappa Mundi by Fra Mauro (circa 1450). They used the transcribed

25Peter Feigl’s Journey Through Historical Maps: http://www.arcgis.com/apps/MapJournal/index.
html?appid=6c3b4136b9304df09c9adcf86dd30dd5.

http://www.arcgis.com/apps/MapJournal/index.html?appid=6c3b4136b9304df09c9adcf86dd30dd5
http://www.arcgis.com/apps/MapJournal/index.html?appid=6c3b4136b9304df09c9adcf86dd30dd5
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data as a knowledge aggregator to represent the world as seen from Venice in the
fifteenth centuries. They also plan to use the map data for automatic provenance
and validation assessment of large and heterogeneous collections of other historical
sources (e.g., books and diaries).

The example studies here demonstrate the important roles of historical maps in
natural and social science as well as interdisciplinary research. They also show
that not only extracting and recognizing map content is important, but providing
semantic annotations to the map content and linking the map content to other
data sources will enable researchers to investigate complex scientific problems
(e.g., [Nan+15]) at a scale that cannot be done today.

2.3 Case Studies of Map Processing Technologies

Before the historical maps can be used in scientific investigations, an important
process is map digitization involving a series of manual or computer assisted steps
to convert map content into a machine-readable format. One of the most common
types of map features for digitization is graphic symbols, which depict important
and interesting geographic phenomena, such as wetlands (Fig. 2.9). The descriptive
metadata of these symbols can be found in map labels or keys; however, labels are
only capable of displaying limited information (e.g., place names) and keys provide
categorical information. For example, Fig. 2.10 shows a group of unique buildings
in a USGS topographic map, but the map does not provide any information about
these buildings (e.g., names). Figure 2.11 shows a scanned map26 of Baghdad, Iraq
where most symbols are labeled with place names but retrieving and integrating
further information (e.g., addresses) of these places from other sources requires
additional efforts such as using the place names and locations to search on Wikipedia
or DBpedia (a structured version of Wikipedia).27

This section presents a semi-automatic and an automatic approach to solve
the same problem: symbol spotting (or recognition) from historical maps.
Both approaches use the SURF (Speeded Up Robust Features) matching
framework [BTV06, Low+99] to demonstrate the end-to-end process. The SURF
matching framework is supported by many computer vision libraries (e.g., OpenCV)
and commonly used to locate and recognize objects in images with little training
required (in contrast to deep learning approaches).

The first approach (Sect. 2.3.1) is a semi-automatic, training-by-example
approach that requires minimal user effort and can handle various types of maps and
symbols. One of the limitations of this approach is its capability to handle a large
number of maps since each map would require some user intervention to generate

26The map was purchased online from Gecko Maps and scanned to produce a map image with a
600 DPI (dots-per-inch) resolution.
27https://wiki.dbpedia.org.

https://wiki.dbpedia.org
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Fig. 2.9 Wetlands in a historical USGS topographic map (Miami, Florida, circa 1958)

Fig. 2.10 Buildings of the Park La Brea Apartment in a historical USGS topographic map
(Hollywood, California, circa 1953) (a) and Google Earth imagery (b). (a) Buildings without text
labels. (b) The Park La Brea apartment on Google earth imagery



2.3 Case Studies of Map Processing Technologies 21

Fig. 2.11 Symbols labeled with place names in a scanned Baghdad map (source: Gecko Maps)

the training data. The second approach (Sect. 2.3.2) examines that when additional
datasets are available, how the concept of geographic context can be used for the
development of an effective way to fully automate the extraction of geographic
information from scanned maps.

2.3.1 Case Study I: Semi-Automatic Symbol Recognition from
Map Scans

This case study presents a semi-automatic, training-by-example approach, called
SymbolRecognizer (Fig. 2.12), for spotting graphic symbols in map images. In
the context of SymbolRecognizer, a model image is an image that covers a user-
selected example in the input map (the red rectangle in Fig. 2.13). The recognition
task is to search the map for symbols that match the model (i.e., target symbols).
SymbolRecognizer utilizes a two-phase process: (1) using the SURF (Speeded
Up Robust Features) matching [BTV06, Low+99] to efficiently identify the local
regions (sub-images) where a target symbol might be present and (2) exploiting
the pixel intensity distribution (with histogram matching) to verify the presence
of a target symbol in each sub-image. Finally, SymbolRecognizer consolidates the
identified symbols from the map and generates the final results.

Traditional document analysis techniques for spotting map symbols generally
require a large number of training data, the presence of map keys (e.g., [SS98]), or
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Fig. 2.12 The
SymbolRecognizer
framework
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ad hoc preprocessing steps (e.g., image thresholding) [CLK14, Lla+01]. In contrast,
SymbolRecognizer takes only one user-selected symbol example to extract the
locations of all symbols that have a similar graphical appearance to the example.
In addition, with the extracted symbol locations, this case study also demonstrates
that SymbolRecognizer can efficiently enable automatic linkages between DBpedia
records and map content.
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Fig. 2.13 A user-selected symbol example

Fig. 2.14 The SURF matching sliding window

2.3.1.1 SURF (Speeded Up Robust Features) Matching

Considering a model image with a width and height equal to w and h pixels,
in the first phase, SymbolRecognizer uses a sliding window of the size equal to
2w and 2h pixels and moves w or h pixels in the horizontal or vertical direction
to scan through the entire input map (Fig. 2.14). The size of the sliding window
guarantees that every target symbol is covered completely in at least one window (a
sub-image). At each position of the sliding window, SymbolRecognizer detects the
SURF descriptors from the sub-image and compares the detected descriptors with
the SURF descriptors detected from the model image. The SURF descriptors are
a type of scale-invariant feature descriptors that capture local “interest” points and
their properties for image registration and object recognition. These interest points
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describe the image intensity at specific pixels and the intensity differences between
their adjacent pixels. If the comparison result contains a high number of matched
features, the sub-image is highly likely to contain a target symbol28 and is passed to
the next phase.

2.3.1.2 Histogram Matching

The SURF matching is efficient and widely used to recognize real-world objects
in photography or videos, but map symbols have simpler shapes (than real-world
objects) and are relatively small, which can cause many false positives in the
matching results. Therefore, to minimize the required training data (user-provided
model images), SymbolRecognizer compares the pixel intensity29 distributions of
the model image and each sub-image that passes the SURF matching to determine
whether or not a target symbol is present and to extract the symbol location.

For each sub-image that passes the first phase, SymbolRecognizer uses the model
image to scan from the top-left corner and moves one pixel in the horizontal or
vertical directions. Each scanning position records a similarity score calculated
using the correlation of the grayscale histogram of the model image (Hmodel)
and the grayscale histogram of the overlapping image patch (the overlapping area
between the model image and the sub-image) (Hpatch). The correlation is defined
as follows:

Similarity Score =
∑255

i=0(H
model
i − Hmodel)(H

patch
i − Hpatch)

√
∑255

i=0(H
model
i − Hmodel)2(H

patch
i − Hpatch)2

. (2.1)

SymbolRecognizer uses an empirically set threshold of 90% on the similarity
score to filter out the sub-images that do not contain a target symbol and to locate
the symbol location. If none of the scanning positions in a sub-image has a similarity
score higher than 90%, SymbolRecognizer discards the sub-image; otherwise, the
scanning position that has the highest similarity score (in a sub-image) is the
detected location of a target symbol.

This method works on both color and grayscale images. SymbolRecognizer uses
the grayscale histogram (0–255 luminosity levels) since the luminosity component
is generally the most distinguishable component for separating geographic features
in a map (i.e., maps need to be readable when printed with black and white printers).

28The reader is referred to [Low+99] for details of this object recognition procedure.
29For example, a white pixel will have a luminosity value of 0, and a black pixel will have an
intensity value of 255.
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2.3.1.3 Result Consolidation

SymbolRecognizer can detect a target symbol in overlapping sub-images during the
SURF matching process since multiple sliding windows can cover a symbol more
than once (Fig. 2.15a). To consolidate the results, if the detected target symbols
overlap, SymbolRecognizer keeps only the symbol with the highest histogram
matching score (Fig. 2.15b).

2.3.1.4 Results and Discussion

SymbolRecognizer was implemented as an Esri ArcMap plugin and was
tested with maps from four sources. Table 2.1 shows the experiment results.
Figures 2.11, 2.16, 2.17, and 2.18 show the test maps, and Figs. 2.16, 2.17, and
2.18 show sample results. For each test map, the user selected one sample symbol
and SymbolRecognizer automatically processed the sample to find other symbols
on the map.

Fig. 2.15 Result
consolidation for overlapping
sub-images. (a) Detected
target symbols before
consolidation. (b) Detected
target symbols after
consolidation

Table 2.1 SymbolRecognizer recognition results

Source Image size (pixels) # of target symbols Precision Recall

USGS Miami (1958) 409 × 438 87 97.33% 83.91%

USGS mine and mineral 2465 × 2150 25 100% 48%

USGS Hollywood (1953) 554 × 396 18 88.89% 88.89%

Gecko Maps, Baghdad 5104 × 2616 17 100% 88.23%
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Fig. 2.16 A historical USGS topographic map (Miami, Florida, circa 1958); model images (left)
and sample results where blue rectangles are the recognized locations (right)

Fig. 2.17 The USGS mine and mineral processing plant locations map; model images (left) and
sample results where blue rectangles are the recognized locations (right)

The results in Table 2.130 show promising extraction precision (with only a few
false positives). The recognition results of the USGS Hollywood map have the

30Precision is the number of correctly recognized symbols divided by the total number of
recognized symbols. Recall is the number of correctly recognized symbols divided by the total
number of symbols in the ground truth.
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Fig. 2.18 A historical USGS topographic map (Hollywood, California, circa 1953); model images
(left) and sample results where blue rectangles are the recognized locations (right)

Fig. 2.19 Examples of overlapping symbols

lowest precision number among all test maps since the target symbols (the Park La
Brea apartment buildings) have varying orientations. Although the SURF matching
is rotation invariant, the histogram matching process might generate true negatives
if the image patch does not cover the entire symbol of different orientations in the
sub-image. For all other test maps, the recognition precision are more than 97%
since the symbols are in the same orientation.

For the recall of the recognition results, significantly overlapping features are the
main cause of the true negatives. Figure 2.19 shows two examples of overlapping
symbols in the USGS Mine and Mineral map. The overlapping symbol to the right
was detected because only a small portion of the symbol was overlapped by another
symbol. The symbol to the left was not detected since the entire symbol was almost
covered by other symbols. The USGS Mine and Mineral map contains 12 (out of
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Fig. 2.20 Automatically linking map symbols and DBpedia entries

25) significantly overlapping symbols and hence the extraction recall is the lowest
among the test maps. For all other test maps, the recognition recall are greater than
83%.

The Baghdad map was manually georeferenced, and after the symbols were
identified, SymbolRecognizer queried the DBpedia SPARQL endpoint31 to retrieve
the nearby DBpedia entries to individual symbol geocoordinates. These entries can
have various DBpedia types such as “Museum,” “Embassy,” “School,” and “Hotel.”
Since the identified symbols were places in the same category, SymbolRecognizer
links each symbol to a nearby DBpedia entry of the most popular DBpedia type
among the retrieved entries. In this test area, the most popular category near the
extracted symbol locations was “Hotel,” and there were only four hotel entries on
DBpedia for the test area. Figure 2.20 shows the Baghdad map with the identified
symbols linked with DBpedia URIs (Uniform Resource Identifier).

31http://dbpedia.org/sparql.

http://dbpedia.org/sparql
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This case study shows that with a few user training samples (one for each test
map), SymbolRecognizer can extract map symbols from a wide variety of maps.
The experiment also demonstrates that once some of the map content is machine-
readable, linking the map content with other data sources can be achieved by
matching the spatial patterns of the machine-readable content (e.g., hotel locations)
to other sources. This type of semi-automatic approach is ideal when the required
number of maps for processing is small, and the variety of their content is
significant.

2.3.2 Case Study II: Multi-Model, Context-Based Automatic
Symbol Recognition from Map Scans

This case study presents an example of a fully automated recognition system,
ContextSymbolRecognizer, for the recognition of hotel symbols from a scanned
map using contextual information from a gazetteer. Given a gazetteer and the same
Baghdad scanned map tested in Sect. 2.3.1, the task is to find all hotel locations in
the map without any user intervention for training the underlying feature recognition
algorithms, also assuming that the scanned map is georeferenced and the gazetteer
does not contain all the hotels on the map.

2.3.2.1 Graphics Sampling Using Contextual Information

Figure 2.21 shows the overall process of ContextSymbolRecognizer. First, Con-
textSymbolRecognizer queries a gazetteer (e.g., GeoNames) using the map extent
and a keyword to find relevant entries for the map symbols (building contextual
information). In the case of the Baghdad map (Figs. 2.11), GeoNames contains two
entries given the search keyword “hotel.” The two hotel locations are Baghdad Hotel
(33.31867, 44.41516) and Palestine Hotel (33.31539, 44.41882).

Then ContextSymbolRecognizer uses the coordinates of these entries to crop the
input map and generate training samples so that the user does not have to manually
provide symbol examples. Specifically, ContextSymbolRecognizer locates these
positions in the map and uses a buffer distance to crop the areas around these two
point locations with the assumption that each of these two cropped areas contains at
least one hotel symbol (Fig. 2.22) (adaptive graphics sampling). This step eliminates
the need for user intervention. The crop distance is defined considering the map
scale and feature type. Note that in Fig. 2.22, the second cropped sample contains
more than one hotel symbol because the two hotels are close to each other.

Next, ContextSymbolRecognizer computes the SURF descriptors from the
cropped areas and stores these descriptors as a knowledge base. Using the SURF
descriptors derived from the samples, ContextSymbolRecognizer scans through the
entire map to find map sub-sections that contain descriptors with similar values. If
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Fig. 2.21 The overall process for fully automated symbol spotting. (i.e., the process of “Manual
select” graphic examples as in SymbolRecognizer is not required.) The process flow on the
left shows a traditional approach for feature recognition using the SURF framework (e.g.,
SymbolRecognizer). ContextSymbolRecognizer eliminates the need for user-selected samples
(model images) and thus fully automates the recognition process

certain combinations of descriptors are matched, ContextSymbolRecognizer labels
these locations as hotel instances. This matching process using SURF for extracting
map symbols is the same as in the semi-automatic SymbolRecognizer described in
Sect. 2.3.1, but SymbolRecognizer relies on manually selected samples In addition,
ContextSymbolRecognizer does not require the historical matching step as in
SymbolRecognizer since the external data source usually (e.g., hotel locations in
GeoNames) provides more training data for extracting the SURF descriptors than
the one manually provided sample as in the case study of SymbolRecognizer.
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Fig. 2.22 Automatically cropped areas (center of these areas are the locations given in the
gazetteer) that contain hotel symbols used as graphics examples to compute descriptors for
extracting all other hotel symbols on the map: Baghdad Hotel (a) and Palestine Hotel (b)

2.3.2.2 Results and Discussion

This experiment was conducted on the scanned map covering Baghdad, Iraq in
Fig. 2.11 as in the case study of SymbolRecognizer. ContextSymbolRecognizer
recognized 13 hotel locations from the scanned map based on the two hotel
entries found in the GeoNames gazetteer. Out of the 13 extracted hotels, 12 of
them were correct (precision 92.3%). The total number of hotels in the map
is 17 (i.e., the ground truth), thus the approach missed 5 hotel symbols (recall
70.58%). Figure 2.23 shows some examples of the extracted symbols. This result
shows slightly lower precision and recall than that in the semi-automatic approach,
SymbolRecognizer (Sect. 2.3.1), which was tested on the same task and map but
involved user intervention to manually label one hotel sample in the map (100 and
88.23%, precision and recall, respectively).

The fact that ContextSymbolRecognizer was able to fully automatically rec-
ognize cartographic symbol using contextual information (here from GeoNames
but also other data sources can be used, e.g., DBPedia) represents an important
step forward in developing more capable recognition systems that scale well for
massive data archives. This type of context-based approach uses existing knowledge
of an area (describing some kind of geographic context) to guide the feature
sampling and extraction process to eliminate user intervention. The ability to
process maps without user intervention is necessary to exploit a large number of
existing maps as well as the full richness of large-volume digital historical map
archives. One limitation for ContextSymbolRecognizer is that the input maps have
to be georeferenced, which makes it more suitable for digital map archives of
georeferenced map series, such as the USGS archive of historical topographic maps.
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Fig. 2.23 Sample extraction results from the fully automated hotel recognition case study. The
small image on the right is one of the automatically identified hotel samples. The small white
circles on the maps are the locations of the SURF descriptors. The yellow lines connect matches
between the SURF descriptors of the map area and the sample. The samples in (a) show correct
identified hotel symbols in four map areas. The sample in (b) shows the only incorrectly identified
area

2.3.3 Case Study Discussion and Outlook

This section presented two case studies for symbol spotting (recognition) from
map images. As described in Sect. 2.2, some studies only require a small number
of maps, but these maps can come from a variety of sources and have a variety
of graphical conditions (e.g., [NSC15]). In this case, the semi-automatic approach
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is preferred since it can handle various types of maps and symbols. In contrast,
for the studies that require a large number of maps from the same map series
(e.g., generating historical place names from a complete historical map series for
georeferencing museum collections), the fully automatic approach can be used since
it has the potential to eliminate manual processing, labeling, and curating steps while
achieving acceptable accuracy.

As the results indicate, the approach of context-based recognition has also the
potential for processing large-volume map archives but would require a more
complex framework and image recognition technologies (than SURF) (e.g., deep
learning technologies) that enable the employment of geographic context and
semantic modeling. One possible extension of these ideas is a recognition frame-
work that exploits the fact that map content is not independent between editions in a
map series (e.g., the USGS topographic map series) and change gradually and often
cumulatively. One can build generic contextual information (e.g., hydrographic
feature types, locations, and geometry) using existing contemporary map data
(e.g., the USGS National Map layers) and use these contextual data to guide the
feature extraction process in the most recent edition of a map similar to what is
described in Sect. 2.3.2. The extracted data from the most recent edition can then
be used as contextual information for the next (older) map edition in order to
carry out the same recognition process. This way, older maps that suffer from low
graphical quality can be processed using contextual information from map sheets
that are close in time, and the results are expected to be more robust than with
common recognition methods. Recent work [Dua+17, Uhl+17, Uhl+18b, Uhl+18a]
has shown promising results of this context-based recognition approach using deep
learning on the recognition of railroads, waterlines, and buildings from historical
USGS topographic maps.

2.4 Chapter Summary

This chapter presented applications in natural and social sciences demonstrating
the opportunities for the computer science and geographic information science
communities to transform conventional research practices in using historical maps.
For example, a new technology that automatically generates machine-readable or
-understandable (e.g., LinkedData [BHB09]) place name databases from historical
maps and to do so at scale32 will enable researchers in biology to minimize the time
and effort for geolocating their data records and to efficiently query and analyze
historical records by location and time. These opportunities also present unique
possibilities for researchers in computer science and geographic information science
to identify collaborators in broad scientific domains. This type of interdisciplinary

32A computational process that can process a large number of maps within a reasonable amount of
time.
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collaboration allows researchers in computer science and geographic information
science to create algorithms and applications to help solve “wicked” research
problems and addressing real-world challenges facing our society. Further, the
chapter discussed two case studies and their challenges in feature recognition from
historical maps. The technologies in the case studies have already shown promising
results in symbol recognition from heterogeneous historical maps though only using
a previous generation computer vision technology (i.e., SURF descriptors). Further
developments of these types of technologies will help make it possible to use a large
number of heterogeneous historical maps efficiently and study historical geographic
datasets on a large scale (e.g., [Dua+17, Uhl+17, Uhl+18b, Uhl+18a]).
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Chapter 3
Creating Structured, Linked Geographic
Data from Historical Maps: Challenges
and Trends

Abstract Historical geographic data are essential for a variety of studies of cancer
and environmental epidemiology, urbanization, and landscape ecology. However,
existing data sources typically contain only contemporary information. Historical
maps hold a great deal of detailed geographic information at various times in
the past. Yet, finding relevant maps is difficult, and the map content is not
machine-readable. This chapter presents the challenges and trends in building a
map processing, modeling, linking, and publishing framework. The framework will
enable querying historical map collections as a unified and structured spatiotemporal
source in which individual geographic phenomena (extracted from maps) are mod-
eled (described) with semantic descriptions and linked to other data sources (e.g.,
DBpedia). This framework will allow making use of historical geographic datasets
from a variety of maps, efficiently, over large geographic extents. Realizing such
a framework poses significant research challenges in multiple fields in computer
science including digital map processing, data integration, and the Semantic Web
technologies, and other disciplines such as spatial, social, and health sciences.
Tackling these challenges will not only advance research in computer science
and geographic information science but also present a unique opportunity for
interdisciplinary research.

3.1 Introduction

Historical geographic datasets and historical Geographic Information Systems
(GISs) support a variety of studies such in environmental epidemiology, urban-
ization, and landscape ecology (e.g., [GE07]), but existing data sources (e.g.,
gazetteers) typically contain only contemporary information. Historical maps are
a great source of geographic information in the past (e.g., historical place names,
landmarks, and transportation networks) and are often the only source that provides
professionally surveyed historical data about the natural and built environment.
Today, map archives such as the USGS (United States Geological Survey) National
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Geologic Map Database,1 USGS Topographic Maps,2 David Rumsey Map Collec-
tion,3 OldMapsOnline.org,4 and the National Library of Scotland5 store a large
amount of historical maps in either paper or scanned formats (e.g., as tiled Web
maps or downloadable scanned images). However, only a small portion of these
historical maps is georeferenced, and even fewer of them have searchable metadata
or machine-readable content. This prevents historical maps from being indexed and
searched and limits the opportunity for both researchers and the general public to
access valuable historical information in the maps.

Even with the long-term effort and recent advances in map processing techniques
(e.g., [Chi10, CLK14, Bud18, Uhl19]), making a large number of historical maps
searchable (by location, time, keywords, and event topics) and their content useable
in an analytic environment (e.g., in a GIS) is still prohibitively expensive and time-
consuming. As a result, studies that require accurate historical information are
usually limited to process only a few historical maps and examine a small area
or a short time period for which manual data curation is possible. Beattie [Bea14]
created a three-dimensional historical topography of the Ballona Creek watershed
(Marina del Rey, California) from two historical USGS topographic maps (circa
1896 and 1902). This historical topography enables environmental planners to
compare historical and current conditions of the Ballona Creek watershed to identify
landscape changes. Kurashige [Kur13] used historical census data, voting records,
and the precinct boundaries extracted from a 1920 map to study “who” (e.g.,
occupations and political parties) in Los Angeles voted for the 1920 California
Alien Land Law that discriminates against the Japanese. In other cases, the studies
that require geographic information in the past but do not have access to appropriate
datasets would approximate historical information using contemporary datasets. For
example, the Yellow-Star Houses project identified 1944 addresses of designated
compulsory residences in Budapest from historical decrees (circa 1944), used a
contemporary street dataset to geolocate these historical addresses, and mapped
them on Google Maps. The contemporary street dataset provides approximate
locations of these designated compulsory residences. While in this case, Google
Maps serves a convenient visualization platform, using a historical map as the
basemap can further contribute rich geographic information in the past, such as
nearby transportation hubs at the time (Fig. 3.1). Further, like many other disciplines
when data publication tools are not easy to use or not available, the manual curation
results from these studies often do not attach to the research publications and only
exist on the Web with simple descriptions or in data repositories that are difficult
to find.

1http://ngmdb.usgs.gov/ngmdb/ngmdb_home.html.
2http://ngmdb.usgs.gov/maps/TopoView/.
3http://www.davidrumsey.com/.
4http://OldMapsOnline.org/.
5http://maps.nls.uk/.

http://ngmdb.usgs.gov/ngmdb/ngmdb_home.html
http://ngmdb.usgs.gov/maps/TopoView/
http://www.davidrumsey.com/
http://OldMapsOnline.org/
http://maps.nls.uk/
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Fig. 3.1 Yellow-star houses on Google Maps (top); a section of a historical map of Budapest,
Hungary (circa 1941) showing the transportation hub (middle and bottom) (sources: http://www.
yellowstarhouses.org/ (top) and http://riowang.blogspot.com/2011/02/after-siege.html) (bottom))

http://www.yellowstarhouses.org/
http://www.yellowstarhouses.org/
http://riowang.blogspot.com/2011/02/after-siege.html
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This chapter6 presents the challenges and trends for building a map processing,
modeling, linking, and publishing framework that allows querying collections of
large numbers and varieties of historical maps as a structured, linked geographic
data source in which individual geographic phenomena (extracted from maps)
are modeled with semantic descriptions and linked to other data sources (e.g.,
GeoNames7 and DBpedia8). The term “semantic description” here refers to the
metadata composed with controlled vocabularies capturing the intra-relationships
between geographic phenomena within a map (e.g., an infill land near a quarry
could be a waste disposal site) and the inter-relationship between historical map data
and the huge amount of LinkedData [BHB09] already published on the Internet.
This framework makes it possible to efficiently study historical spatiotemporal
phenomena on a large scale (both in time and space) and solve problems that cannot
be easily answered with only contemporary geographic datasets.

Figure 3.2 shows an example system if the proposed framework is successful.
Figure 3.2a shows a portion of a historical Ordnance Survey six-inch map (circa
1902) and contemporary satellite imagery of the same area (Bristol, UK). The
historical map shows two quarry locations and infill lands (the red rectangles).
Quarries are a common pollution source (at which the polluted materials could
be dumped at nearby infill lands). This type of contamination could make the soil
not suitable for growing edible vegetables and fruits. Figure 3.2b shows a current
farming area on the potentially contaminated land (the red polygon). The question
at hand is whether or not it is safe to grow grapefruit in this area. The modeled
historical geographic data from the proposed framework will support the following
reasoning process. Possible contamination materials from a 1902 quarry are heavy
metals M. The areas of infill lands extracted from the historical map are modeled as a
probability surface of M (i.e., the target region). The accumulated rain precipitation
over the target region from 1902 to 2015 is R. The main soil type of the target region
is S. The probability of that the target region still contains M given the probability
surface, R, and the soil type, S, is low, so the target region can be used to grow edible
plants. Since grapefruit trees have a shallow root system, growing a grapefruit tree
may be safe in the target area.9

Realizing the proposed framework poses significant research challenges in
multiple fields in computer science and geographic information science, including
digital map processing, data integration, and Semantic Web technologies. Figure 3.3
shows an example implementation of the proposed framework. First, there are

6This chapter is based on a previous vision paper presented at the 2015 ACM SIGSPATIAL
Conference [Chi15] and the First Place of the Best Vision Paper Award sponsored by the
Computing Research Association’s Computing Community Consortium under the CCC Blue Sky
initiative.
7https://www.geonames.org/.
8http://wiki.dbpedia.org/.
9This is just an example. By no means the author is an expert of soil contamination or growing
grapefruits.

https://www.geonames.org/
http://wiki.dbpedia.org/
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Fig. 3.2 Using historical maps to identify historical contamination sites (source: http://maps.
nls.uk/geo/explore/sidebyside.cfm#zoom=17&lat=51.4235&lon=-2.6157&layers=6&right=
BingHyb). (a) Locations of quarries and infill lands in a historical ordnance survey six-inch map
(Somerset VI.SW, circa 1902; Somerset, South West England, UK) and the contemporary satellite
imagery. (b) Current farming areas (approximated by the red polygon) that could have been
affected by the historical contamination site

automatic map processing services that can process a large number of historical
maps automatically to convert (some of) their content to a structured, machine-
readable format. For the maps that are difficult to process with automatic services,

http://maps.nls.uk/geo/explore/sidebyside.cfm#zoom=17&lat=51.4235&lon=-2.6157&layers=6&right=BingHyb
http://maps.nls.uk/geo/explore/sidebyside.cfm#zoom=17&lat=51.4235&lon=-2.6157&layers=6&right=BingHyb
http://maps.nls.uk/geo/explore/sidebyside.cfm#zoom=17&lat=51.4235&lon=-2.6157&layers=6&right=BingHyb
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Fig. 3.3 An example implementation of the proposed map processing, modeling, linking, and
publishing framework

there are semi-automatic map processing services supported by intelligent Web user
interfaces to help facilitate manual digitization (e.g., crowdsourcing digitization
projects, post-processing for improving the results from an automatic map process-
ing system). The extracted structured data then can serve as metadata to support
map search (i.e., searchable map images) and can be used to match to other sources
for linking the map content to other data sources, adding additional metadata to the
maps, and georeferencing the maps.

The challenges for realizing this framework include three interrelated challenges
(not in a particular order):

• how to make historical maps easily searchable,
• how to efficiently and accurately convert map content to a machine-readable

format and record provenance information and potential conversion errors, and
• how to generate semantic descriptions for historical map images, their content,

and digitization related information (e.g., uncertainty), and link them to other
data sources.

The following sections explain the challenges, research directions, and tech-
nology trends for overcoming these challenges. The remainder of this chapter
is structured as follows: Section 3.2 describes the challenges and technologies
supporting effective map searches. Section 3.3 presents an overview of various types
of technologies for converting historical map scans to machine-readable, structured
formats. Section 3.4 provides a brief background of geographic data formats and
discusses relevant tools for modeling and linking geographic data. Section 3.5
summarizes the chapter and discusses future work.
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3.2 Finding Relevant Historical Maps

Finding relevant historical maps given a region, a point in time, or a topic is never
easy.10 This is because most of the historical maps in the libraries, map archives,
and on the Web are usually scanned images and stored and maintained with limited
metadata. The challenge here is how to generate some metadata automatically
for large numbers and wide varieties of maps to support effective map searches.
For example, the metadata could contain basic information, including the map
geocoordinates and publication and revision dates, to enable spatiotemporal map
queries, of a comprehensive collection of information, including the coordinate
systems and projection information, data sources, the publisher, and place names.
The maps can be any map images on the Web or can come from a specific map
series in a map archive.

A straightforward way to enable effective map search is to apply optical character
recognition (OCR) technologies on the map images to extract their text content
(e.g., [Chi13, Wei13, CK14, Wei17, Chi17, LLZ18]). Compared with OCR in other
types of document images, detecting and recognizing map text has to address
particular challenges. This is because historical place name dictionaries (gazetteers)
that can be used to correct partially recognized words are often unavailable. Also,
map content is complex and contains overlapping feature layers. Further, the quality
of the original paper maps and the scanning process (e.g., map fonts and scan
resolution) can have a crucial impact on the OCR accuracy [Chi+16] (Fig. 3.4).
In particular, Weinman [Wei17] developed a novel approach that exploits prior
knowledge of the placement of text labels and geographic features as well as the
typographic style consistency of the labels to improve the OCR results. Moreover,
after OCR, the recognized text content becomes keywords describing each map,
but the recognition results are typically separate words that require additional
treatments to constitute complete place names and thus support meaningful search
queries [LC18b]. For example, the individual words “Los” and “Angeles” by itself
provide significantly less descriptive information compared to the complete place
name “Los Angeles.”

Instead of directly recognizing text labels from historical maps to generate
metadata, another approach is to automatically link the maps to other datasets and
then use the linked datasets to generate metadata. For example, in [Wei13, Wei17],
the author presents methods that recognize text labels in maps to then match the
locations and text content of the recognized labels to a gazetteer of contemporary
names for georeferencing the maps. While this approach shows promising results
with small-scale maps (for which most of the map text exist in the gazetteer),
many interesting maps are large-scale maps containing historical place names
that are not in the gazetteer. In addition to text matching, one other direction
is to extract distinctive shapes and spatial patterns of geographic features from

10To appreciate this difficulty from experience, the reader is encouraged to explore how long it
would take to find a large-scale map of 1941 Budapest.
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Fig. 3.4 Maps with common typewritten fonts usually show the best results for OCR compared to
maps with less common fonts (e.g., Fraktur, Antiqua) or stenciled and handwritten text. Also, text
in maps often overlaps with other map layers, which makes text recognition particularly sensitive to
general printing quality issues, such as blurring, false coloring, and mixed colors. (Figure adapted
from [Chi+16]). (a) Stenciled text in a historical map of Denmark. (b) An example of poor print
quality in a National Imagery and Mapping Agency (NIMA) evasion chart (EVC NH-36A, NIMA
ref. no. EVCXXNH36A)

maps automatically (e.g., road intersections [CK08] and contour lines [Pez11])
and then search for matching patterns in existing datasets to link map images to
the datasets (e.g., [Che+04]). The challenge for this feature-matching approach is
trifold. First, the automatic approaches for geographic feature extraction could be
sensitive to the quality of the input map (similar as for text recognition) and hence
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would not generate sufficiently distinctive feature patterns [Chi+15]. Second, the
matching process could be computationally expensive if the search space is large.
A combination of text and geographic feature matching could help to overcome
these difficulties by providing different types of matching candidates and reducing
the search space (e.g., only search for a match in the regions that contain at least
50% of the recognized text). Third, distinctive shapes of geographic features can
be difficult to find and might not be consistent across multiple data sources due to
the inconsistency in coordinate/projection systems and the varying degrees of map
generalization. To overcome this difficulty of geometry inconsistency for feature
matching, recent work employs a reinforcement learning strategy to automatically
align contemporary vector data to historical maps [Dua+17]. The reinforcement
learning framework enables informed search for corresponding features and hence
makes the alignment process efficient. The framework does not require a preprocess-
ing step for the extraction of distinctive shapes and patterns of geographic features
(e.g., road intersections) (Fig. 3.5).

Fig. 3.5 The contemporary vector data of railroads (red vector lines, top image) could have mis-
alignment (locations pointed by the white arrows, top image) and different feature representations
than the features on the map. The automatic alignment system learns [Dua+17] how to approximate
the geometry of map features and align the contemporary vector data to the map in a reinforcement
learning environment that breaks the contemporary vector data into small segments and iteratively
moves them towards the map features. This way the automatic alignment system does not require
the extraction of distinctive shapes and patterns of geographic features
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After a map is linked with additional datasets, the next challenge is how to
generate the metadata to enable effective map searches. Gelernter [Gel08] built
an automatic text mining approach to find maps in journal articles. This approach
classifies the maps by years and themes using their companion text. This work shows
that when enough data are linked to a map image, the data can be used to generate a
comprehensive set of metadata to support meaningful search queries.

3.3 Converting Map Content to Machine-Readable Formats
and Record Uncertainty

The mainstream approach for converting the image content of maps to a structured,
machine-readable format still heavily relies on manual work with some help
from raster-to-vector conversion software (e.g., R2V11) or a GIS. This is because
automatic map processing algorithms and systems are often not robust to process
a wide variety of maps and typically requires advanced knowledge in computer
science to train and use the system [CLK14]. For example, automatic systems for
recognizing text features from maps often result in partially recognized strings
because map labels often overlap with other map features, such as road lines and
do not follow a fixed orientation within a map [Nag+97, CK14]. Moreover, many
historical scanned maps suffer from poor graphical quality due to the bleaching of
the original paper maps and archiving practices. However, manual map digitization
requires a tremendous amount of time and knowledge in GIS. Beattie [Bea14]
spent more than 70 h on manual tasks for extracting contour lines from two USGS
historical maps (which also requires the knowledge of various tools in image
processing and GIS). Godfrey and Eveleth [GE15] demonstrated a GIS workflow
for digitizing a 1986 Idaho map for displaying the map information in a Web
environment.

To scale up manual digitization efforts and to handle the vast variety of historical
map types, crowdsourcing with semi-automatic approaches for map digitization
has been shown to be more robust (than fully automatic approaches) in producing
accurate results [CLK14]. The challenges here include how to automatically verify
user inputs and how to build adaptive semi-automatic techniques that increase
the level of automation as more maps are processed and eventually eliminate
manual work once enough samples are processed. Both the British Library and the
David Rumsey Map Collection held events to georeference their map collections
by crowdsourcing. The New York Public Library’s crowdsourcing approach for
map digitization went one step further in that it provided semi-automatic tools
for extracting parcel polygons from US insurance maps.12 They also noted that a

11http://ablesw.com/r2v/download.html.
12https://github.com/NYPL/map-vectorizer/.

http://ablesw.com/r2v/download.html
https://github.com/NYPL/map-vectorizer/
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fully manual approach would not scale to process their map collections within a
reasonable time [Art13].

Also, while there exists an abundant work on automatic and semi-automatic
map processing techniques [CLK14], only a few studies go beyond raster-to-
vector conversion to record the processing “uncertainty” during the extraction. As
noted in an earlier technical report from the Aeronautical Chart and Information
Center [GS62], accuracy of the source material, intermediate and final products need
to be considered to achieve the optimum utilization of a map product. To estimate the
accuracy of the final datasets, the challenge is how to build systematic and objective
evaluation methods for individual steps in a map processing tool and produce a final
accuracy estimate [LBW05]. In a recent work, Lin and Chiang [LC18a] built an
approach that systematically quantifies the uncertainty measurement resulting from
an image recognition model (Convolutional Neural Networks) and the centerline
extraction process (the thinning operator) for extracting the centerlines from
area features in a historical map. The uncertainty measurement of the extracted
centerlines enables automatic conflation between the extracted map data (in a vector
format) and contemporary vector data. In contrast, vector-to-vector conflation often
relies on a user-defined buffer distance to identify the matching features from the
sources for conflation.

The following subsections provide an overview of the challenges and current
trends in digital map processing, including crowdsourcing approaches (Sect. 3.3.2),
semi-automatic approaches (Sect. 3.3.2), and fully automatic approaches with the
help of contextual geographic data (Sect. 3.3.3).

3.3.1 Crowdsourcing Approaches

Crowdsourcing is not a new idea (but can be very difficult to implement and
popularize) in document recognition and map processing. In addition to the
crowdsourcing events held by the David Rumsey Map Collection and the New York
Public Library, specifically, for converting textual content in historical maps using
crowdsourcing, the Pelagios Commons13 is a notable community that provides
tools and online infrastructure to facilitate annotating historical locality references
in digital materials. Their tools allow semi-automatic extraction, recognition,
annotation, and linking of place names in historical maps [Sim+10, Sim+14, S+15].
These tools and the online infrastructure allow them to provide full-text searchable
place data ranges from ancient times to 1500 AD and from Europe to East Asia.
Another example of crowdsourcing projects for historical map digitization is the
GB1900 project.14 With crowdsourcing, the GB1900 project now provides about
two million historical place names and other text (e.g., Fig. 3.6) from the six-inch

13http://commons.pelagios.org/.
14http://www.visionofbritain.org.uk/data/#tabgb1900.

http://commons.pelagios.org/
http://www.visionofbritain.org.uk/data/#tabgb1900
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Fig. 3.6 An example of the GB1900 dataset where the blue dots show the locations of digitized
text, and the orange dot is the selected text (source: https://geo.nls.uk/maps/gb1900/#zoom=
16&lat=52.4636&lon=-0.7627&layer=0)

maps (Second Edition County Series) published by the Ordnance Survey between
1888 and 1914 covering the entire Great Britain.

When the crowdsourcing strategy is used, approaches for cross-validating
between the user-generated content and the “gold data” as well as recording the
provenance information are required for quality control (e.g., [GGH15, Bar+18,
Bud+16]). As an example of quality control technologies, in the New York Public
Library crowdsourcing project, the participants were asked to provide polygon
outlines for building footprints from the nineteenth and early twentieth century
historical maps using a Web interface. Many participants could provide polygon
outlines for the same building footprint, and hence these crowdsourced polygon
outlines are not guaranteed to be consistent. Budig et al. [Bud+16] developed an
approach that takes multiple participant inputs of polygon outlines of the same
building footprint from the New York Public Library crowdsourcing project and
generates a “consensus polygon” that is similar to the majority of all user inputs.
Their approach was tested on approximately 3000 polygon outlines for 200 building
footprints and the “consensus polygon” was correct 96% of the time. In addition
to using the user contributions (e.g., the polygon outlines) for quality control,
Barz et al. [Bar+18] proposed a novel unsupervised approach to rank participants
of a crowdsourcing project using a similar idea to PageRank [Pag+99]. This
unsupervised approach computes a user reputation score for individual users based
on the consistency of their contributions. The user reputation score helps in quality
control as the contributions from users with a higher score is more trustworthy
(accurate) than the users with a lower score.

https://geo.nls.uk/maps/gb1900/#zoom=16&lat=52.4636&lon=-0.7627&layer=0
https://geo.nls.uk/maps/gb1900/#zoom=16&lat=52.4636&lon=-0.7627&layer=0
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3.3.2 Semi-automatic Approaches

To handle a wide variety of maps, the state-of-the-art graphics recognition technolo-
gies for cartographic symbol extraction from scanned maps rely on a user labeling
process to generate a set of shape and/or color descriptors for detecting the feature
of interest (e.g., [CLK13, CCM14, FK97, FC97, KZ03, Bud18]).

Chiang, Leyk, and Knoblock [CLK13] developed an interactive approach that
uses manually collected road and non-road (e.g., wetland) samples to extract road
vector data and remove noise from historical USGS maps (Fig. 3.7). This approach
reduced 38% of the overall processing time with accurate results (compared to
manual digitization), but it still required 50 min (including sample labeling and
result curating) to process a map of 2283 × 2608 pixels.15 While this approach
has demonstrated the ability to produce accurate results, the manual sample
labeling would be required for processing each individual map sheet as paper
maps are printed (archival) documents and often suffer from poor graphical
conditions [KZ03]. The significance of these image quality issues can vary from
one map area to another, requiring additional user labeling, and the already collected
samples may not be directly applicable to another map.

In a series of publications [BDW16, Bud18, BvK16, Bud16, BD15], the authors
developed a number of applications using active learning technologies for process-
ing historical maps and early prints, such as extracting map text [Bud16, BD15] and
linking text and map symbols [BDW16]. These applications include efficient and
intelligent user interaction strategies to interactively learn to improve the system for
the document processing tasks.

Bastani et al. [Bas+18] present a “machine-assisted map editing” system, MAiD,
that integrates intelligent capabilities to an OpenStreetMap online editor. MAiD
helps to reduce human efforts in tracing road centerlines for imagery digitization
by automatically inferring road segments and only asking for human validation.
The system, while designed for processing imagery data, could be used as a
semi-automatic data extraction tool for historical maps to bridge the gap between
automatic feature recognition systems and manual curation work.

This line of semi-automatic approaches has shown promising results on single
map sheets. However, because they require user inputs, these approaches do not
scale well for processing large numbers of various types of historical maps with
heterogeneous contents.

15A USGS historical topographic map with the 600 DPI (dots-per-inch) scan resolution is about
12,000 × 12,000 pixels.
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Fig. 3.7 Road layer extraction and cleaning with a few user labeling steps (Figure adapted
from [CLK13]). (a) An example map after color segmentation. (b) A user-provided example of
roads. (c) The extracted road layer with noise. (d) A user-provided example of road pixels. (e) A
user-provided example of noise objects. (f) The cleaned road layer. (g) Road vectorization results
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3.3.3 Multi-Model, Context-Based, Automatic Approaches

Another line of work in the recent development of geographic feature recognition
from historical maps uses additional data sources (i.e., contextual data) to help
correct recognition errors and improve the level of automation. While this strategy
is common in OCR (e.g., using a dictionary), compiling and effectively using a
“feature dictionary” for processing historical maps is difficult. Historical maps are
typically the only source of geographic information in the past, and finding reference
data to help improve the recognition results from an automatic map processing
system is a difficult task. For example, a text dictionary built using contemporary
data sources does not contain place names that no longer exist. Also, without
knowing the map coverage beforehand, multiple dictionary entries can match to
a partially recognized label. For example, a partially recognized label “Glas wo”
near London could be matched to “Glasgow” when the label is “Glassworks.” Even
if map coordinates are known, the map text might not be at the exact location of the
geographic features depending on the cartographic labeling practice applied for map
production. Weinman [Wei13] presents an approach that overcomes this challenge in
recognizing text from historical maps. His approach recognizes text labels in maps
to then match the recognized text to a gazetteer by their position patterns using
a RANSAC (RANdom SAmple Consensus) variant, iterative matching algorithm,
called MLESAC (Maximum Likelihood Estimation SAmple Consensus) [TZ00].
He showed that this approach could automatically georeference historical maps and
improve the recognition accuracy even when the gazetteer only contains 70% of the
text in the test maps.

In another work, Chiang et al. [Chi+14] developed a semi-automatic approach
that extracts and recognizes text labels in map images in a system called Strabo.
While Strabo could achieve over 90% precision and recall in recognizing text
labels in scanned contemporary maps, it could only produce 47.6% precision
and 83.5% recall on well-conditioned text from historical Ordnance Survey six-
inch maps [Chi+16]. Very often only partial labels could be recognized from a
historical map (Fig. 3.8a,b) and manual post-processing is required to correct the
recognition results. In an effort to test higher levels of automation in text recognition
from historical maps in Strabo, Yu, Luo, and Chiang [YLC16] exploit the fact
that geographic names for the same area found in different data sources are not
independent and use geographic names in OpenStreetMap and other maps covering
the same area as the contextual knowledge source. Given a historical map, the
task at hand is to recognize all map labels in the map accurately without user
intervention. First, the system queries a map repository to find all map editions
covering the same area and then extracts and recognizes labels in the identified
maps. Second, the system matches the recognized (imperfect) labels using their
locations and string similarity using a fuzzy matching algorithm. Finally, the system
uses two million geographical names extracted from OpenStreetMap to generate an
improved recognition result. For example, by matching “Clture” from the 1935 map
to“urch” in the 1900 map, the system finds the word “Church” in the geographic
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Fig. 3.8 Matching imperfect OCR results from two map editions to improve recognition accuracy
(Figure adapted from [YLC16]). (a) Mis-recognizing “St. Thomas Church” as “homa urch” in a
1900 map. (b) Mis-recognizing “St. Thomas Church” as “Thomas t Cltureh” in a 1935 map

names extracted from OpenStreetMap to replace “Cltureh” and “urch” in the 1935
and 1900 recognition results, respectively (Fig. 3.8).

For the multi-model approaches in map text recognition, existing challenges
include how to exploit different similarity measures between the extracted map
text (which contains recognition errors) and other sources (e.g., gazetteer entries)
to 1) prune the search space for finding the matching pattern efficiently and 2) using
matches between the OCR text and dictionary entries to learn potential OCR errors
specifically for each map type. For example, the character sequences “ni” and “in”
is commonly recognized as one character “m” during OCR. With enough training
data (matches between OCR text and dictionary entries), the algorithm should be
able to learn that the OCR results “Baldwm Hills” is highly likely to be “Baldwin
Hills” for a specific map type or condition.

Following the direction of multi-model, context-based map processing, in
another effort, Chiang and Leyk [CL15] exploit the fact that geographic information
for the same area found in different data sources is not independent to automatically
generate training samples and enable fully automatic cartographic symbol
recognition. They demonstrated this approach on the recognition of hotel symbols
in a map using a gazetteer as the contextual knowledge source. Hotel-related geo-
information (presence and locations) found in a map and a gazetteer may not be the
same, but they should have some overlap assuming the data are close in time. Given
a scanned map covering Baghdad, Iraq (current edition) the task at hand is to find all
hotel locations in the map without user intervention (i.e., training the algorithms).
First, their system queries GeoNames using the map coordinates and keyword
“hotel.” The query results contain two hotel locations (overlapping information
between the gazetteer and map): Baghdad Hotel (33.31867, 44.41516) and Palestine
Hotel (33.31539, 44.41882). Next, around each of these two locations, the system



3.3 Converting Map Content to Machine-Readable Formats and Record. . . 53

crops a sub-area in the map assuming it contains a hotel symbol. The system then
computes feature descriptors from the cropped areas. Finally, the system scans
through the entire map to find areas with similar descriptors (matching) and extracts
those areas as hotel symbols. In prior work, this descriptor matching process relied
on manually selected samples of hotel symbols [CCM14]. In the experiment,
this multi-model system extracted 13 hotel locations from the map based on the
hotel information from GeoNames. Out of the 13 extracted hotels, 12 are correct
(precision 92.3%). There is a total of 17 hotels on the map (recall 70.58%). In
previous work on the same task and test data, higher precision and recall (100% and
88.23%, respectively) were only achieved with manually provided hotel samples in
the map [CCM14].

In an NSF16 sponsored project, LinkedMap, the researchers from the University
of Southern California and the University of Colorado, Boulder have developed the
first version of context-based recognition approaches based on deep machine learn-
ing techniques. They use the VGG network (a Very Deep Convolutional Network
model) [SZ15] to create DCNNs for feature extraction from scanned maps [Dua+17,
Uhl+17, Uhl+18b, Uhl+18a]. For example, they developed a fully automated
process for collecting large varieties of high-quality training data using contextual
spatial data layers (housing data) for building symbol extraction that overcomes spa-
tial shifts between map features and contextual data [Uhl+17, Uhl+18a] (Fig. 3.9).
They have successfully tested fully automated extraction on up to 50 maps using
more than one million training samples. However, due to the network architecture
limitations, the recognition results are at patch level (in contrast to pixel level) and
thus have inaccurate boundaries. To overcome such limitations, they also tested
new segmentation methods from computer vision (e.g., [LSD15, Zha+17]) for
geographic feature extraction from historical maps [Dua+18]. These methods have
achieved significant improvements on non-document images, but their application
to maps is difficult because cartographic symbols are significantly different from
common (non-document) image objects of interest. Therefore, “weakly” annotated
training samples and the reduced spatial resolution during the training of a deep
learning model can result in a significant drop of the accuracy in the extraction
results.

In sum, multi-model, context-based approaches have the potential to achieve a
fully automatic system for map processing using ancillary geographic knowledge
to guide the feature sampling and extraction process. This ability to process maps
without user intervention is necessary to exploit the full richness of large volume
digital historical map archives.

16National Science Foundation (United States).
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Fig. 3.9 Using contextual data for automatic extraction of settlement features from historical
USGS topographic maps (green: no building; black: single building; orange: urban area) (Figure
adapted from [Uhl19])
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3.4 Modeling and Publishing Map Content

In general, geographic data (as well as the extracted, machine-readable map con-
tents) exists in two major formats: the vector and raster formats.17 The vector format
stores geographic information in one or a series of point locations and sometimes
the geometric and topological relationships. Popular vector formats include the Esri
Shapefile [ESR98], GeoJSON,18 and the Open Geospatial Consortium (OGC)19

Well-Known Text, Well-Known Binary, and KML (Keyhole Markup Language).
The Esri Shapefile stores object geometry and their attributes (e.g., location names,
addresses). GeoJSON is a lightweight vector format mostly for web GIS and
other GIS applications that handle small datasets. Well-Known Text and Well-
Known Binary are common data formats for spatial databases (e.g., PostGIS)
originated from the OGC. Their definitions are included in the ISO/IEC 13249-
3:2016 standard. KML (currently maintained by the OGC) contains not only
the object geometries and attributes but also how these geometries should be
visualized in an application (e.g., Google Earth and Google Maps Android Software
Development Kit).

The vector format does not handle well the geographic phenomena that are
continuous over space (e.g., the areas of infill lands extracted from the historical
map modeled as a probability surface). In contrast, the raster format can represent
continuous phenomena in a grid data structure. The most common raster geographic
data type is imagery, including satellite imagery and aerial photos. Every cell in a
raster grid contains a value for the location represented by the grid. For example,
the pixel (cell) values in a satellite image represent the amount of the reflected
sunlight captured by a camera. Other raster geographic data include density maps
and heatmaps. Another example of raster data is the extracted map layers from a
scanned map in which each pixel represents a probability of the pixel belonging to
a specific map layer (e.g., road vs. text layers).

The geographic data in the vector format represent the majority of the existing
(machine-readable) structured geographic data. The geographic data in the raster
format comprise both structured (e.g., density map where each grid represents a
density value) and unstructured geographic data (e.g., scanned historical maps and
satellite imagery). The extracted map content can be multi-temporal spatial vector
layers (e.g., road centerlines) allowing efficient data handling and analysis, or raster
layers in which each raster cell represents how certain it belongs to a particular
map feature (e.g., the probability of this cell indicating the urban area in a historical
map scan). Vector layers allow a small file size and precise point, skeleton, and
boundary representations of map content. Raster layers have the benefit that its data

17The reader is referred to [Cla10] for a detailed introduction to GISs and GIS data formats.
18https://geojson.org/.
19http://www.opengeospatial.org/.
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representation is not limited to a pre-defined boundary and can be easily integrated
with other datasets such as historical census data (e.g., census summary tables or
reporting area boundaries from the National Historical Geographic Information
System, NHGIS [Man+17])20 or land-use and land-cover data (e.g., the USGS
Geographic Information Retrieval and Analysis System, GIRAS [Mit77]).

Once the map content is (manually or automatically) converted to machine-
readable datasets (either in the vector or raster formats), to make them widely
useful and accessible, the challenge is how to add semantic descriptions, include
descriptions of uncertainty measures derived from map metadata (rectification and
co-registration errors) and the extraction process (e.g., the computational graph
of a deep learning model), to the datasets and link the datasets to other sources.
Geographic information is already a crucial link connecting entries on the Linked-
Data Web [Jan+12]. Also, various ontologies for modeling geographic datasets
and spatial relationships exist (e.g., NeoGeo Vocabulary Specification21) [Tam18].
Adding semantic descriptions to the map content will enable ontology-supported
searches beyond search by place, time, format, and keyword. Representing the
extracted dataset as LinkedData [BHB09] could also promote data sharing and
support studies that require large historical spatiotemporal datasets. LinkedData
represent all of the data as triples, consisting of a subject, predicate, and object using
a language called RDF (Resource Description Framework).22 Each element of the
triple can be represented as a URI (uniform resource identifier),23 which provides
a unique identifier for the subject, predicate, or object. Objects can also contain a
data property such as a string or number. The advantage of representing all of the
data as LinkedData is that it provides a standard syntax and terminology enabling a
wide range of data representation transformations, and the unique identifiers enable
linking across different pieces of metadata and sources.

The challenge here is how to build the techniques that allow a user to model and
publish their geographic datasets easily. Existing tools for data integration such as
the interactive Web application, Karma,24 has the basic functionality for modeling
geometries (i.e., points, lines, and polygons) but not complex or continuous
geographic phenomena (e.g., a probability surface). For example, Fig. 3.10 shows
that a user can use Karma to map a tabular dataset with geographic coordinates to

20https://www.nhgis.org.
21http://geovocab.org/doc/neogeo.
22https://www.w3.org/RDF/.
23For example, the URI, https://www.geonames.org/3020251/embrun.html, refer to the town
Embrun in France. The reader is referred to the GeoNames Ontology website (http://www.
geonames.org/ontology/documentation.html) for more examples about URIs and the Geo Semantic
Web.
24http://usc-isi-i2.github.io/karma/.
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Fig. 3.10 Using Karma to map a tabular dataset to the W3C Geospatial Ontology and visualize
the dataset in Google Earth. (a) Mapped semantic type of the latitude column in a tabular dataset.
(b) Mapped semantic types of both latitude and longitude columns. (c) Display the mapped data
on Google Earth
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the W3C Geospatial Ontology25 and then visualize the dataset in the Web Google
Earth.26 With Karma, the user can also choose to export the modeled geographic
datasets to KML or Esri Shapefile. Once the data can be easily modeled with
semantic descriptions and linked to other data sources, simply hosting the data on a
webpage will greatly help the data to be indexed by the search engines and used by
other researchers.

Another notable application for generating linked map data is Recogito,27 which
is a Web application developed under the Pelagios Commons.28 In Recogito, the
user can upload a map image and provide bounding boxes or point annotations
of the text labels on the map. Then the user can search for matching entities in
Recogito to provide text annotations and entity linkages of the geographic features
on the map. Figure 3.11 shows an example in which the user annotates the text label,
“Los Angeles,” and then links the text label to the GeoNames entity of Los Angles
using Recogito. The Web application is easy to use and does not require software
installation. Also, since Recogito already contains some geographic datasets (e.g.,
GeoNames), a simple keyword search allows the user to link the geographic features
on a map to entities in other datasets. If the search result does not contain any entity
for a keyword, the user can also add new text annotations.

In sum, there exist several data models and ontologies for describing and linking
historical information from maps and other historical materials,29 but new tools for
either automatically or semi-automatically mapping datasets extracted from maps
to the data models still need to be developed. For example, a new technology
that automatically generates machine-understandable knowledge about places from
historical maps and other sources (e.g., books) and to do so at scale will enable
researchers to minimize the time and effort for finding and organizing data for their
research. Also, new semi-automatic systems that give data curators the flexibility to
define and use a rich semantic model for describing their data, efficiently linking
the data across sources, and publishing data online (e.g., a combination of Recogito
and Karma) will largely facilitate the process of generating and using machine-
understandable data from historical materials.

25https://www.w3.org/2005/Incubator/geo/XGR-geo-ont-20071023/.
26See the full tutorial here: https://github.com/usc-isi-i2/Web-Karma/wiki/Working-with-
geospatial-data/.
27https://recogito.pelagios.org/.
28http://commons.pelagios.org/.
29The reader is referred to [Tam18] for an overview of ontologies and the ontologies that describes
geographic data.
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Fig. 3.11 Using Recogito to annotate the place label “Los Angeles” in an USGS historical
topographic map and link the label to the GeoNames entity of Los Angeles. (a) Recogito web user
interface. (b) The GeoNames feature of Los Angeles (5568321) (source: https://www.geonames.
org/5368361/los-angeles.html)

3.5 Chapter Summary

This chapter described the challenges and trends for building a map processing,
modeling, linking, and publishing framework that enables querying historical map
collections as a structured, linked spatiotemporal source. This framework supports
answering important questions that require long-term spatiotemporal datasets that

https://www.geonames.org/5368361/los-angeles.html
https://www.geonames.org/5368361/los-angeles.html
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represent states of the Earth’s surface in the past. Current challenges include fun-
damental research in efficient and effective methods for converting map content to
machine-readable format, recording provenance and uncertainty information during
such digitization processes, modeling map content, provenance, and uncertainty
information, and linking the modeled data to other data sources. The resulting tools
and datasets will enable a wide utilization of historical maps and support a variety
of studies overcoming limitations of current approaches that rely heavily on manual
work and are lacking in data sharing.
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Chapter 4
Training Deep Learning Models
for Geographic Feature Recognition
from Historical Maps

Abstract Historical map scans contain valuable information (e.g., historical loca-
tions of roads, buildings) enabling the analyses that require long-term historical
data of the natural and built environment. Many online archives now provide
public access to a large number of historical map scans, such as the historical
USGS (United States Geological Survey) topographic archive and the historical
Ordnance Survey maps in the United Kingdom. Efficiently extracting information
from these map scans remains a challenging task, which is typically achieved by
manually digitizing the map content. In computer vision, the process of detecting
and extracting the precise locations of objects from images is called semantic
segmentation. Semantic segmentation processes take an image as input and classify
each pixel of the image to an object class of interest. Machine learning models
for semantic segmentation have been progressing rapidly with the emergence of
Deep Convolutional Neural Networks (DCNNs or CNNs). A key factor for the
success of CNNs is the wide availability of large amounts of (labeled) training
data, but these training data are mostly for daily images not for historical (or
any) maps. Today, generating training data needs a significant amount of manual
labor that is often impractical for the application of historical map processing.
One solution to the problem of training data scarcity is by transferring knowledge
learned from a domain with a sufficient amount of labeled data to another domain
lacking labeled data (i.e., transfer learning). This chapter presents an overview
of deep-learning semantic segmentation models and discusses their strengths and
weaknesses concerning geographic feature recognition from historical map scans.
The chapter also examines a number of transfer learning strategies that can reuse
the state-of-the-art CNN models trained from the publicly available training datasets
for the task of recognizing geographic features from historical maps. Finally, this
chapter presents a comprehensive experiment for extracting railroad features from
USGS historical topographic maps as a case study.
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4.1 Introduction

Historical maps store valuable information documenting human activities and
natural features on Earth over long periods of time.1 For example, the USGS
(United States Geological Survey) historical topographic map archive records the
evolvement of railroad networks in the USA dating back to the early 1900s or even
the late 1800s. Such information is essential for the studies that require detailed,
long-term historical geographic data. With hundreds of thousands of historical
maps scanned and stored in digital archives, existing digital map processing
methods that need user interventions for the recognition of map content remain
inefficient for processing large numbers of maps [CLK14]. For example, Chiang and
Knoblock [CK13] developed a semi-automatic approach for extracting road vectors
from maps. Their approach requires users to label a few samples of road lines
and road intersections. Samet and Hancer [SH12] built a semi-automatic system to
reconstruct contour lines from topographic map scans, in which the user selects the
dimension of a “mask” indicating the gaps between the extracted broken contour
lines for reconnecting them. In addition, some systems use prior knowledge to
separate map layers. For example, Henderson et al. [Hen+09] uses the color index
of USGS topographic maps to separately extract each map layer. These systems do
not scale well for processing large numbers and varieties of historical maps.

In recent years, Deep Convolutional Neural Networks (DCNNs or CNNs) have
shown promising performance in many computer vision tasks when a sufficient
amount of labeled training data are available (e.g., [SZ15, He+16, Hua+17]). One
of the main advantages of CNNs is their capability of handling large diversified
input data (e.g., face recognition from images of various lighting conditions and
background). To train CNNs for a number of image understanding tasks (e.g., face
recognition, street scenes parsing), many publicly labeled datasets are available,
including ImageNet [Rus+15b], PASCAL [EW11], and CamVid [Bro+08]. As
an example, ImageNet2 contains 14,197,122 images describing 21,841 concepts
(e.g., “wheeled vehicle”) in WordNet [Fel98]. Training on ImageNet, the state-
of-the-art CNNs have achieved impressively low error rates in image recognition
challenges. For example, VGG [SZ15], GoogLeNet [Sze+15], and ResNet [He+16]
have achieved 7.3%, 6.7%, and 3.57% error rates in the ImageNet Challenges
in image classification, detection, and localization in 2014, 2014, and 2015,
respectively [Rus+15a]. However, (scanned) maps are a special type of document
image, and thus, training and using a deep learning model for extracting geographic
features requires careful considerations of:

• how to select an appropriate CNN architecture for extracting accurate boundaries
of geographic features and

1In this chapter, the term “historical maps” refer to the professionally prepared maps by
cartographers and typically published by government mapping agencies. The term “map scan”
refers to scanned images of maps.
2http://www.image-net.org.

http://www.image-net.org
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• how to reuse, if possible, the learned knowledge from the existing state-of-the-art
CNNs trained with daily images to help improve the performance of identifying
geographic features from map scans.

Without an understanding of these issues as well as the best practice to handle them,
unsuccessful attempts in using deep learning models for automatic understanding
map scans could slow down the further advancement of digital map process-
ing techniques and their applications. In many other application domains (e.g.,
autonomous driving) that use CNNs or other deep learning models, comprehensive
reviews of deep learning technologies concerning these domains are available (e.g.,
[Bal+19]) but not for digital map processing, which is unfortunate given the huge
amount of available historical map scans, their valuable content, and the wide
availability of CNNs. This chapter attempts to provide a clear connection between
deep learning technologies and the domain of digital map processing for building
an automatic geographic feature recognition system using CNNs. Specifically, this
chapter presents an overview and suggestions of the best practice for using deep-
learning semantic segmentation models exploiting a transfer learning strategy for
recognizing geographic features from historical map scans.

The remainder of this chapter is structured as follows. Section 4.2 describes the
challenges of using deep learning for extracting geographic features from historical
map scans. Section 4.3 provides a brief background on CNNs and the state-of-
the-art semantic segmentation models concerning map processing. Section 4.4
introduces the concept and strategies of transfer learning for reusing pre-trained
deep learning models for recognizing geographic features from historical map
scans. Section 4.5 presents a comprehensive experiment on feature recognition from
historical maps scans using various deep learning models and transfer learning
strategies. Section 4.6 summarizes the chapter and discusses future work.

4.2 Challenges in Using CNNs on Historical Maps

In the field of machine learning, artificial neural networks (ANNs) refer to a
computational graph that can be used for learning a model to describe complex
relationships within a set of data (unsupervised learning) or between a set of
input data and their output from a process (supervised learning) as well as for
other learning tasks (e.g., reinforcement learning). The computational graph (i.e.,
the network architecture) contains a set of nodes (neurons) and their connections
(synapse). A Convolutional Neural Network (CNN) (or Convolutional Neural
Networks, CNNs) is a special type of ANNs that have a deep network structure
with a feed-forward information propagation strategy (i.e., network without cycles).
In practice, CNNs are used in a variety of image recognition tasks, including
object detection, recognition, and segmentation. Extracting geographic features (or
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Fig. 4.1 Example training data from the PASCAL VOC2011 dataset. (a) An example training
image. (b) The corresponding pixel-wise labeled segmentation image, including the background
(black), table (orange), and chairs (red)

delineating their pixel locations)3 from map scans can be seen as the computer
vision task of “semantic segmentation.” CNNs for semantic segmentation aim to
assign each pixel in an image to an object class (e.g., cars, people, ground, or
sky). In particular, for training and testing machine learning models for semantic
segmentation, the 2012 PASCAL Visual Object Classes (VOC) dataset [Eve+]4

contains 20 segmentation classes (e.g., object classes of tables, chairs, and people)
and 6929 labeled image segmentation results (Fig. 4.1).

Many of the state-of-the-art CNNs use the learned “feature representations” from
an existing, pre-trained CNN and then replace some or add additional network
structures and train the updated CNN with additional data for a different recognition
task (from the recognition task of the original CNN). For example, a CNN for image
classification (e.g., ResNet [He+16]) can be used to generate feature representations
in another CNN for detecting scene text (e.g., EAST [Zho+17]); a CNN for
identifying boats from satellite imagery [Yan+18] can also be extended for detecting
scene text [Jia+17]. Some of these modifications require significant changes in
the model architecture (i.e., network structures), and others only need to retrain
some layers of the network without modifying the architecture. The latter type of
modification is called “transfer learning,” which is especially useful when training
data is scarce.

This section presents two major challenges towards applying semantic segmenta-
tion CNNs to historical map scans for automatically extracting geographic features.

3In this chapter, extracting or recognizing geographic features refers to the process of annotating
each pixel in a map scan with a class label of a type of geographic feature (e.g., roads, text labels,
or buildings).
4http://host.robots.ox.ac.uk/pascal/VOC/index.html.
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4.2.1 Accurate Boundary Delineation of Geographic Features

Most of the existing semantic segmentation models trained and tested on the public
datasets, such as the PASCAL VOC, may not be suitable directly for extracting
accurate boundaries of the geographic features in historical map archives [Dua+18].
In recent work, the Very Deep Convolutional Networks (VGG) [SZ15] were used
for feature extraction from scanned historical maps, but due to the architecture
limitations, the recognition results could have inaccurate and shifted boundaries
[Dua+18, Uhl+17]. This is because VGG, like many CNNs, abstracts the input
images through multiple down-sampling processes (e.g., the convolutional and max-
pooling layers), which can result in the loss of local image information and poorly
delineated object contours or boundaries. Figure 4.2 shows examples of semantic
segmentation results from a number of deep learning models where small objects
in the input image (e.g., light poles) are often not recognized and irregular contours
are often generalized in the results. For many computer vision applications, well-
recognized object boundaries are often not a strict requirement (e.g., for recognizing
individual persons in an image). Yet, for the extracted map features to be useful in
scientific studies, the delineated boundaries need to be precise given that a one-pixel
offset in the feature geometry may correspond to a distance of several meters on the
earth surface.

Maps, as a special type of document image, contain cartographic symbols with
boundary representations significantly different from the (non-document) image
objects in the public datasets commonly used for training and testing CNNs for
semantic segmentation models. Compared to images in the public datasets, the
image pixels representing a geographic feature of interest in a map document
occupy only a small proportion of the entire image (Fig. 4.3b). Therefore, even
slightly reducing the spatial resolution during the training of CNNs can result in
a significant decrease of the spatial accuracy in the extraction results. In addition,
the graphical representations of cartographic symbols (e.g., colors and shapes)
belonging to different map layers can be very similar when the focal window is
small, which can result in high proportions of false positives in the extraction results.
For example, Fig. 4.4 shows waterline symbols and their corresponding text. If only
a small portion of the characters (e.g., the bottom part of the character “e”) is
considered during the semantic segmentation process, it can be misclassified as a
part of the waterline symbols. These challenges are often not a major concern when
deep learning models are used for the task of recognizing objects in daily images
(e.g., segmenting hair areas instead of individual hairs from an image).

Generating accurate object boundaries is still an open research topic in semantic
segmentation, and new methods have been proposed to overcome such limitations
of inaccurate delineated boundaries resulting from image down-sampling, (e.g.,
[LSD15, YK16, BST15]) and achieved significant improvements on non-document
images (e.g., daily images in the PASCAL-Context). Section 4.3 will present
an overview of common CNN architectures and recommendations for feature
recognition from map scans (Fig. 4.4).
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Fig. 4.2 Example semantic segmentation results from FCN variants: the white arrows indicate
example image objects that are either small objects or small contour details, which are difficult to
recognize. (Figure adapted from [KU19])

4.2.2 Scarce Training Data for Cartographic Documents

The second challenge is that semantic segmentation models trained with the publicly
available, labeled datasets do not work well for (historical) maps without a sufficient
amount of labeled training data from map scans. This is because the training and
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Fig. 4.3 The object-of-interest (a bird) in typical training datasets for semantic segmentation
models occupies a large region in the image (a) in contrast to the typical geographic feature
(railroads) in maps (b) about 2.5% of the entire image

Fig. 4.4 The graphical representations of cartographic symbols belonging to different map layers
can be very similar, e.g., waterlines (a) and characters (b)

target data are from very different data domains. Most labeled training data from
public datasets are daily images containing real-world objects, while maps are
document images with geographic features represented by cartographic symbols.
Figure 4.5 shows image samples from ImageNet, a public dataset commonly used
for training CNNs and a USGS topographic historical map. Generating labeled
data for training semantic segmentation models requires a significant amount of
resources, which is often impractical to find for the domain of map processing. In
contrast, other application domains, such as the recognition of traffic signs and cars
from photos, have drawn large numbers of contributions of labeled data from both
the industry and academia.
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Fig. 4.5 Image samples form ImageNet and the USGS topographic historical map archive. (a)
Samples of training data from ImageNet. (b) A historical USGS topographic map (Los Angeles,
1:24,000, circa 1966)
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A solution to overcome the problem of insufficient labeled data is the technique
of transfer learning, which takes a machine learning model trained on some datasets
and further trains the model with datasets from a new (often different) data domain
so that the final model can be applied to the new data domain (sometimes called
“fine-tuning” in the deep learning literature). The goal of transfer learning is, with
only scarce labeled data, to achieve the recognition performance as if there is
sufficient training data by transferring the knowledge learned from one domain with
sufficient labeled data to another domain. For example, assuming we have a large
number of labeled data for dogs in daily images and a small number of labeled data
for cats, also in daily images. We can first train a CNN model to recognize dogs in
the images. With a sufficient amount of training data, this CNN model will learn
a number of representative image features and their combinations for recognizing
dogs in the images. Then we can use transfer learning techniques to fine tune the
model with labeled cat data for recognizing cats in the images.

Many researchers (e.g., [ALL17, Mar+16, Cas+15]) have taken advantage of
transfer learning for their segmentation tasks when the available training data is
limited. Audebert et al. [ALL17] investigated the performance of several deep
fully convolutional neural networks (DFCNNs) for the segmentation of Earth
Observation images (remote sensing data over an urban area). They successfully
transferred a CNN trained with daily images (ImageNet) to handle remote sensing
images. Marmanis et al. [Mar+16] built a two-stage CNN classifier to recognize
urban areas in remote sensing images. In the first stage, their network derives new
data representations using a CNN trained with ImageNet. In the second stage,
the network uses the representations derived from the first stage as the input to
recognize urban areas in remote sensing images. Compared with the best results of
the same task from previous work, their two-stage CNN classifier has improved the
recognition accuracy from 83.1 to 92.4%.

Castelluccio et al. [Cas+15] tested three training strategies using two state-of-
the-art deep learning models (CaffeNet and GoogLeNet) for semantic land-use
classification from remote sensing scenes. The first strategy is to train the models
from scratch using only remote sensing data. The second method uses some layers
in the pre-trained CaffeNet and GoogLeNet (with ImageNet). The third method
completely uses the image features generated from the pre-trained models and only
trains the final classifier. The second method has achieved the best performance.

Sometimes transfer learning is not the solution when the recognition task in the
target domain can be very different from the recognition task of the existing CNN
models. Hence, researchers also build and train new CNN models for their specific
learning tasks (e.g., [MMH14, RGC16]. Maire et al. [MMH14] built a CNN to detect
marine species in aerial imagery, which outperformed the traditional classifier using
features defined by users (e.g., color features, entropy). Romero et al. [RGC16]
proposed an unsupervised method using CNN models to extract deep features for
remote sensing image classification using a small amount of labeled data with high
accuracy (84.53%).

The existing work described here demonstrates the importance of transfer
learning and the choice of a training strategy concerning the similarity of the
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source and target data domain and the availability of training data in both domains.
Section 4.4 will discuss a number of considerations when using pre-trained CNN
models and applying transfer learning for map processing given the availability of
training data.

4.3 Overview of Semantic Segmentation for Geographic
Feature Recognition from Map Scans

The goal of a deep-learning semantic segmentation model (hereafter, semantic
segmentation model) is to predict the class label (e.g., people, cars, or buildings)
of each pixel in an input image.5 Together, the pixels of the same class label
constitute one or more detected areas of a specific object class (e.g., red pixels
in Fig. 4.1b represent chairs in the image in Fig. 4.1a). In many cases, deep
learning models for semantic segmentation build on an existing CNN or use an
existing CNN as the building blocks (backbone) in their network architecture (e.g.,
see [Gar+17, LDY18, KU19]). These existing CNNs are originally designed and
pre-trained for image classification tasks (i.e., assigning a class label, e.g., dog, to
the entire image), and hence some modifications are required to enable them to
handle semantic segmentation tasks.

In general, semantic segmentation models include two main learning objectives.
One objective is to determine “what” objects are there in the images (e.g., chair or
table objects), which needs semantic information. The other task is to detect “where”
are the objects in the images, which needs spatial context (i.e., spatial relationships
of object pixels). Note that typically a semantic segmentation model learns to
determine “what” and detect “where” simultaneously during the training process.
The inference of “what” needs the global information of representative descriptions
of image features, which often exist in the deep layers in the neural networks (i.e.,
the layers after down-sampling). In contrast, the inference of “where” needs fine-
grained local information derived from image pixels in a neighborhood, which can
be obtained from the shallow layers of fine spatial resolutions in the neural networks.
In recent efforts, researchers have been studying how to aggregate the information
of “what” and “where” for semantic segmentation (see [KU19, LDY18]).

This section first introduces three widely available, state-of-the-art CNN models
for image classification, namely VGG16 [SZ15], GoogLeNet [Sze+15], and ResNet
[He+15]. Because of the popularity of these models, their pre-trained versions
(usually trained with millions of images from ImageNet [Rus+15b] for image
classification) are frequent choices as the network building blocks for deep learning
models for many types of image understanding tasks. As an example, Sects. 4.3.1–
4.3.3 also include a naive modification to these models for semantic segmentation.

5The reader is referred to [Gar+17] for a comprehensive review on semantic segmentation models.
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Next, Sects. 4.3.4 and 4.3.5 discuss the two major types of network architectures
of deep-learning semantic segmentation models aiming for fusing the information
of “what” and “where.” Section 4.3.4 presents the semantic segmentation models
that utilize the encoder and decoder structure to recover lost information during
the down-sampling process using an example of the Fully Convolutional Networks
(FCN) [LSD15]. Section 4.3.4 also includes a more sophisticated modification to
VGG16 [SZ15], GoogLeNet [Sze+15], and ResNet [He+15] for semantic segmen-
tation by using a common strategy for fusing the information of “what” and “where.”
Section 4.3.5 presents the semantic segment models that use feature images of multi-
scale pyramids to preserve both the semantic and spatial information at the same
time using the Pyramid Scene Parsing network (PSPNet) as an example [Zha+17].
Section 4.3.5 also includes a modification to PSPNet for geographic feature
recognition from historical map scans.

4.3.1 VGG16: The 16-layer Very Deep Convolutional Networks
for Large-Scale Image Recognition

Simonyan and Zisserman [SZ15] developed the Very Deep Convolutional Networks
(commonly referred to as VGG) that won the first and the second places on two of
the image localization and classification tasks in the ImageNet Large-scale Visual
Recognition Challenge in 2014 (ILSVRC 2014). The novel contribution of VGG is
that it increases the depth of the network (i.e., more layers than exiting CNNs at
the time) to improve the image classification performance significantly, while does
not increase substantially the computation complexity (i.e., the number of learnable
weights in the network) by using very small convolution and pooling filters (3 × 3
and 2 × 2, respectively).

VGG significantly outperformed the previous generation of image classification
models that were the winner of the ILSVRC in 2012 and 2013. VGG achieved a
6.8% image classification error in contrast to an 11.7% error from the ILSVRC2013
winner [ZF14, Ser+14]. Figure 4.6 shows a “block” in the VGG network archi-
tecture. A “conv” (convolutional) layer (or a filter) contains a set of learnable
parameters (or weights). The size of the parameter set depends on the dimension
and depth of the layer (e.g., the filter dimension is 3 × 3 in the case of Fig. 4.6).

Fig. 4.6 An example block of VGG16: The dimension of filters in a layer is indicated by the
number before “conv.” “Pool/2” refers to the stride size of 2 for each max-pooling layer
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The “pool” (pooling) layer is commonly used in CNNs between the convolutional
layers or blocks to reduce the number of parameters by spatially combining nearby
parameters (and hence reduce the spatial resolution). The dimension of the filter,
the type of the filter, and the number of layers in the network determine the size of
the “receptive field” of the network. For example, each of the output values in the
feature image of a 3 × 3 convolutional layer summarizes a 3 × 3 region of its input.
In the case of VGG, for the first convolutional layer that the input is the raw image,
each of the output values in the feature image can be thought of as the image feature
learned from multiple 3 × 3 regions of the input image. This learned image feature
is the “local information” (the spatial information of “where”). After multiple layers
of convolutional and pooling layers, each of the output values in the feature image
represents image features learned from a larger region, and hence the deep layers
learn the “global information” (the context information of “what”).

The VGG stacks multiple similar small blocks and connects them with two fully
connected (FC) layers (sometimes called dense layers) at the end of the network.
The FC layers are commonly used in a neural network to act as the final classifier
for generating the classification output. In the case of VGG, the final output is a class
label for the entire input image (e.g., an image of the dog class). Similar to typical
CNNs, the blocks of convolutional and pooling can be thought of as the extractors
or learner of image features, and the FC layers then look at the extracted image
features to make a classification decision.

For semantic segmentation tasks, such as extracting pixels of geographic features
from historical maps, the goal is to assign a class label to each pixel (image
segmentation) instead of one class label for the entire image (image classification).
Therefore, a straightforward approach for enabling VGG for semantic segmentation
is to first enlarge the output of image features from the network blocks (of
convolutional and pooling layers) to the same dimension of the input image with a
depth of the number of classes [LSD15]. This way, each pixel in the input image has
a set of image features for predicting its class label. This enlargement process can
be achieved by simple up-sampling layers (e.g., performing a bilinear interpolation)
or deconvolutional layers (with learnable weights as in the convolutional layers).
Next, instead of using the FC layers for generating one output for the entire image,
a softmax layer takes the output from the enlargement process and generates a
probability distribution for each pixel over all possible classes. The summation
of the probability of a pixel being in each class is 100%. For example, it could
be assumed that the input image has a dimension of 256 × 256 pixels, and the
semantic segmentation model aims to predict three classes: “road,” “text,” and
“background.” The output of the enlargement process will have a dimension of
256 × 256 pixels with a channel depth of 3, each representing the learned image
feature of a class. The softmax layer takes this output and again generates a result
of a dimension of 256 × 256 pixels with a channel depth of 3, each representing
the probability of a pixel belonging to a specific class. For each pixel in the softmax
output, the summation of the class probabilities (along the depth axis) is 100% (e.g.,
road: 96.1%, text: 2.8%, and background: 1.1%), and the class that has the highest
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Fig. 4.7 The modified architecture of VGG16 for semantic segmentation. The number after
“conv” represents the number of filters (e.g., “3 × 3 conv, 64” represents 64 convolutional filters of
a 3 × 3 dimension)
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Fig. 4.8 An example of the inception module in GoogLeNet. The numbers represent the filter
sizes in the convolutional layers

probability is the predicted class for a pixel. Figure 4.7 shows the architecture of the
modified VGG16 for semantic segmentation.

4.3.2 GoogLeNet

Szegedy et al. [Sze+15] proposed the inception module that both increases the depth
and the width of a CNN. Figure 4.8 shows the inception module. GoogLeNet is
an implementation of the inception module. GoogLeNet won the first place of on
one of the classification and localization tasks a ILSVRC in 2014 with a 6.67%
top-5 error outperforming VGG16 (a 7.32% top-5 error). GoogLeNet contains 22
layers connecting 9 inception modules after the first few convolutional layers. An
inception module contains a number of convolutional filters of different sizes and a
concatenation operator that combines the output of the convolutional filters. The
idea of the inception module is that instead of using a fixed size convolutional
filter, the network can learn to select and combine output from filters of varying
sizes. This allows the network to select the most effective sizes of receptive fields
and combine the image features learned from these receptive fields. In addition to
the inception module, another major difference between GoogLeNet and previous
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Fig. 4.9 The modified architecture of GoogLeNet for semantic segmentation. The first two
convolutional layers have 64 7 × 7 filters (“7*7 conv, 64”)

CNNs is that GoogLeNet does not have FC layers. GoogLeNet employs a linear
layer of average pooling for the final image classification output. The authors found
that the FC layers do not improve the performance but largely increase the number
of required parameters (i.e., increase the computational cost). Similar to VGG, for
semantic segmentation tasks, the final average pooling layer in GoogLeNet can be
replaced with an up-sampling layer to generate an output in the same dimension
as the input image with a softmax layer at the end of the network for multi-class
classification. Figure 4.9 shows the architecture of the modified GoogLeNet for
semantic segmentation.

4.3.3 ResNet

After the success of VGG16 with using deep networks in a CNN, continued
experimentation with even deeper networks revealed the problem of degradation,
which means that with increasing depth of the network, the accuracy eventually
saturates and then degrades rapidly [He+16]. In 2016, He et al. [He+16] presented a
landmark paper that applied the residual learning framework, ResNet, to prevent the
degradation problem using “shortcut connections” and improve the accuracy of the
network without increasing the computation complexity. The shortcut connections
enable a residual block to learn the differences between the input and output of the
block instead of learning the directing mapping. For example, assuming a network
block learns a function H(x) = y where x is the input, and y is the output, in
the case of deep networks, the function H(x) is learned from multiple non-linear
layers. When the number of layers increases, the network accuracy would improve
(comparing to the networks with fewer layers) only to a point and then stop to
improve or become worse than that of a shallower network. This is because the direct
mapping, H(x), is difficult to learn with a deep network. The shortcut connections
solve this problem by allowing the layers in a deep network to use the input from
previous layers, and instead of computing H(x) directly, it computes F(x) where
F(x)+x = H(x). The function, F(x), is called the residual function and is easier to
learn than the direct mapping function H(x). Figure 4.10 shows a block of residual
learning in ResNet. ResNet stacks multiple blocks of residual learning and connects
them with a final FC layer. ResNet is the winner for image classification task in
ILSVPC in 2015 with a 3.57% top-5 error.
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Fig. 4.10 An example block of ResNet. The numbers represent the filter size in the convolutional
layers. ReLU (Rectified Linear Units) is the activation function used in ResNet

Fig. 4.11 The modified architecture of ResNet for semantic segmentation. The first convolutional
layer has 64 3 × 3 filters (3*4 conv, 64).

For semantic segmentation tasks, the FC layer in ResNet can be replaced with an
up-sampling layer to generate an output in the same dimension as the input image
with a softmax layer at the end of the network for multi-class classification. Fig-
ure 4.11 shows the architecture of the modified ResNet for semantic segmentation.

4.3.4 The Encoder and Decoder Architecture for Semantic
Segmentation

To fuse the semantic (global) and spatial (local) information and recover the loss of
spatial information in the deeper layers, one type of semantic segmentation model
employs the encoder and decoder structure in a network (e.g., [RFB15, BKC17,
CC17, BP18]). The encoder learns the semantic information by gradually reducing
the spatial resolution. The corresponding decoder gradually recovers the loss of
spatial resolution. For example, SegNet [BKC17] uses a symmetric encoder and
decoder architecture and pooling indices in the max-pooling operators to track
the spatial locations of the distinctive representations of image features during the
learning process. UNet [RFB15] also employs a symmetric architecture, which
preserves the local information by concatenating the individual encoder outputs of
a higher resolution (i.e., spatial information) to the corresponding decoder output
(i.e., semantic information). However, the training process of such symmetric
architecture can be inefficient.
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Another popular semantic segmentation model with the encoder and decoder
structure is the Fully Convolutional Networks (FCN) [LSD15], which use the
skip architecture to “skip” layers in the network and directly add outputs from
the shallow layers to the deeper layers in the network to overcome the problem
of inaccurate segmentation boundaries. The skip architecture combines the final
result with the results from the intermediate layers, which preserve some of
the location information. Intuitively, combining the results from the intermediate
layers and the final layer has the advantage of utilizing both the global and local
information since the final convolutional layer represents the global information
while the intermediate convolutional layers provide the local information. The
experiment results in [LSD15] also show that better segmentation performance can
be achieved when more intermediate results are combined with the final results.
In contrast, as discussed in the previous sections, VGG (Sect. 4.3.1), GoogLeNet
(Sect. 4.3.2), and ResNet (Sect. 4.3.3) are designed for image classification tasks,
which require learning the unique image features to distinguish between individual
class labels (e.g., dog vs. cat) for the entire input image. Therefore, the loss of
local information caused by down-sampling layers (e.g., max-pooling) does not
have a significant impact on the classification results. However, image segmentation
tasks need to classify each pixel in the input image, which requires local (image)
information to precisely delineate the boundaries of the objects. Therefore, the
simple modifications of VGG, GoogLeNet, and ResNet (Figs. 4.6, 4.9, and 4.11)
only rely on the global information for semantic segmentation and will not be able
to generate accurate object boundaries in the semantic segmentation result.

The encoder in FCN can be any CNN, such as VGG, GoogLeNet, or ResNet.
In the decoding processing, FCN combines outputs from multiple layers to obtain
multi-scale context information, which is called the skip architecture. Figure 4.12
shows the architecture of FCN where the red arrows indicate the skip architecture
combining the outputs from multiple layers. The outputs from the shallow layers
(e.g., the purple and blue layers) contain fine spatial information because the spatial

Fig. 4.12 An example of the FCN architecture showing examples of shallow to deep layers
(purple, blue, and green layers)
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Fig. 4.13 Examples of the modified VGG16, GoogLeNet, and ResNet with the skip architecture
for semantic segmentation. Assuming the size of the input image is 224 × 224 pixels, the
networks show the dimensions of the extracted intermediate and final image features for semantic
segmentation. For example, dimensions of the intermediate and final image features for the
FCN-ResNet are 224 × 224, 112 × 112, and 56 × 56, respectively. (a) FCN-VGG16 with the
skip architecture. (b) FCN-GoogLeNet with the skip architecture. (c) FCN-ResNet with the skip
architecture

resolution of the outputs is similar to the input images. (Note that the purple layer
has the same dimension as the input image, so it does not require up-sampling.) The
outputs from the deep layers (e.g., the green layer) have been processed through
multiple convolutional layers and max-pooling layers and contain the semantic
knowledge for representing the input image but with coarse spatial resolution.
Combining the outputs from both shallow and deep layers enables both spatial
and semantic information to be used in the final segmentation layer. Figure 4.13
shows the modified FCN-VGG16, FCN-GoogLeNet, and FCN-ResNet with the skip
architecture from Figs. 4.7, 4.9, and 4.11.

The main limitation of FCN or FCN-based models is their capability to effec-
tively use the context information in a complex image [Zha+17]. For example, a
black line in a map scan following the directions of contour lines is more likely
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to represent roads than railroads. Also, the pre-trained CNNs used in FCN usually
are trained with lower resolution images while document scans are generally high
resolutions images, and hence the pre-trained CNNs might not be able to capture
small object details without network modifications.

4.3.5 Multi-Scale Pyramids of Feature Images for Semantic
Segmentation

In addition to using an encoder and decoder structure, a type of semantic seg-
mentation architecture utilizes multi-scale pyramids of feature images to capture
the spatial and semantic information in the output of each layer in the network
[He+16, Yan+18, DDC98]. For example, SPP-Net [He+16] uses spatial pyramid
pooling, which employs varying stride sizes to generate image features of multi-
scales and then concatenates them into a fixed-length representation. The atrous
spatial pyramid pooling [Che+17] applies the atrous convolution operator with
varying rates to the same feature map and concatenates them into a new feature
image containing both spatial and semantic information. The advantage of spatial
pyramid pooling is that it contains semantic information representation of the entire
input images instead of only sub-regions determined by the receptive fields as in the
case of FCN.

The Pyramid Scene Parsing network (PSPNet) [Zha+17] is a representative
model for spatial pyramid pooling and is well suitable to handle complex scenes and
a wide range of input data. Figure 4.14 shows the architecture of PSPNet. The CNN
component in Fig. 4.14 can be any CNN. The component in the red box in Fig. 4.14
represents the spatial pyramid pooling module. PSPNet uses various pooling layers

Fig. 4.14 An example of the PSPNet architecture where the red box indicates the spatial pyramid
pooling module
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to generate feature images with varying resolutions. The dimensions of the feature
images from top to bottom in the red box in Fig. 4.14 are 1×1, 2×2, 3×3, and 6×6.
PSPNet uses global average pooling to generate the 1 × 1 resolution feature image.
The 1 × 1 resolution feature image captures image features representing the entire
input images. In contrast, the output of FCN from the deep layers only cover sub-
regions of the input images. The image features of the entire input images can help
provide global information for classifying pixels that have a similar local context
but belong to different object types (e.g., a segment of waterlines vs. characters).
After the spatial pyramid pooling module, PSPNet concatenates the feature images
generated from CNN and the outputs generated from the spatial pyramid pooling
module.

For geographic feature recognition from map scans, the semantic segmentation
model needs to be able to delineate small objects from a complex background.
This means the learned image features in the network should preserve more spatial
information than context information, especially in the case where the number of
classes is small. A simple way to preserve the spatial information of the learned
image features is to add the skip architecture in the CNN (e.g., a pre-trained VGG
used in PSPNet) so that local information can be used in the spatial pyramid pooling
module. Figure 4.15 shows the architecture of this modified PSPNet. The trapezium
box can be any CNN models, such as VGG. The skip connections combine results
from intermediate (green) and final layers to keep both local and global information
from the CNN model. The outputs of skip connections, the feature images, are the
inputs for the pyramid pooling module.

In sum, the choices of CNNs and the semantic segmentation architecture have
a significant impact on geographic feature recognition from historical map scans,
especially when the target features are small (e.g., three-pixel wide railroads).
Section 4.5 will present a number of experiments for extracting railroads from
map tiles of a USGS historical topographic map. The experiments include the FCN
models and PSPNet introduced in this section and a summary of their strengths and
weaknesses.

Fig. 4.15 The architecture of the modified PSPNet
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4.4 Overview of Transfer Learning for Geographic Feature
Recognition from Map Scans

Transfer learning, conceptually, is the process of learning some knowledge from one
domain (the source domain) and then applying the learned knowledge to another
domain (the target domain). For example, we can train a CNN model to detect if an
image contains cats and then fine tune the model for detecting dogs if the training
data for cats are abundant and that for dogs are scarce. This section discusses
transfer learning strategies concerning the availability of training data and assuming
the source and target domains are very different (e.g., images from ImageNet vs.
historical maps). The source domain is the domain where a large amount of labeled
data is available. The target domain is the domain for which we want to apply the
trained networks.

Yosinski et al. [Yos+15] show that the image features learned from the first few
layers in a CNN are general features similar to the features learned by classic,
curated image recognition features (e.g., Gabor filters or color blobs), while the
learned features become more specific to the training data in the deep layers. Hence,
the general features learned from the source domain can help the recognition in the
target domain even when the target and source domains are very different utilizing
a proper strategy of reusing and fine-tuning a pre-trained model [Oqu+14]. For
general image understanding applications (e.g., object detection and segmentation),
the pre-trained source models are often trained with millions of publicly available
image datasets (e.g., ImageNet).

In the case of applying transfer learning to the problem of extracting geographic
features from map scans using pre-trained CNNs or semantic segmentation models,
the training/testing datasets in the source and target domains can be very different.
For example, the source dataset can come from ImageNet, which has over 14 million
images and 20,000 classes from daily lives, while the target dataset can be the
USGS topographic historical maps. When the source and target datasets are very
different, Yosinski et al. [Yos+15] showed that fine-tuning the pre-trained model
helps to gain better performance. This process of fine-tuning includes initializing
the model parameters using the values learned from ImageNet and using the target
dataset to adjust the parameters. However, depending on the size of the training data
for the target domain, the fine-tuning process requires careful considerations of a
training strategy (e.g., adjusting the weights of shallow vs. deep layers using the
training data in the target domain) to obtain the best transfer learning result.

According to the work in [ZF14, Yos+15], the first few layers (the shallow
layers) in CNNs learn general features, such as edges. The deeper the layers are,
the more specific features the models learn to represent the input images. Hence,
when sufficient training data are available for the target domain, fine-tuning a pre-
trained model can begin from initializing the model with the pre-trained weights
(e.g., pre-trained VGG16 with ImageNet) and then retrain the entire model from
the shallow layers to the last layer (classification layer, usually FC and/or softmax
layers) using the training data for the target domain. However, if the amount of
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Fig. 4.16 The architecture of VGG16. The label Z*ConvX-Y means that there are Z convolutional
layers in the block, and each convolutional layer has a number of Y filters with the shape X*X.
The label Z*FC-X means that there are Z fully connected layers, and each layer has a number of
X neurons

the available training data for the target domain is small, training from the shallow
layers could result in model overfitting and hence only fine-tuning the deep layer
or the classification layer with the training data for the target domain is preferred.
As an example, Fig. 4.16 shows the architecture of VGG with examples of color-
coded shallow, middle, deep, and classification layers (the red, green, blue, and
white boxes, respectively).

The capability to transfer the learned knowledge from a source domain to a target
domain is important because when the training data from the target domain is scarce,
the computation resource is limited, or the training time is constrained, learning the
“knowledge” from the target domain directly is impractical. For example, VGG16
has 16.4 million parameters, which is not feasible to learn directly from only
thousands of training examples. With many pre-trained CNNs available online (e.g.,
VGG, GoogLeNet, and ResNet), reusing these pre-trained CNNs for digital map
processing not only saves resources in creating large numbers of map training data
but also prevents the need for expensive computing resources for training a CNN
from scratch. Section 4.5 will present a number of experiments for geographic
feature recognition from map scans. The experiments vary the size of the available
training data and test transfer learning strategies of fine-tuning the shallow, middle,
deep, and classification layers.

4.5 Experiment

This section presents three sets of experiments. In the context of railroad recognition
from historical map scans, the experiments test the impact of (1) different types
of CNN backbones in semantic segmentation models, (2) various transfer learning
strategies, and (3) modifications on PSPNet for improved feature recognition from
historical map scans.
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4.5.1 Experimental Data, Settings and Evaluation Metrics

The experimental data contain eight sections of map tiles cropped from a scanned
USGS historical topographic map in the 7.5-min series (scale 1:24,000) downloaded
from the USGS website (Fig. 4.17). The scan resolution is around 600 DPI (dots-
per-inch). The image dimension of the entire map scan (including the map collar)
is 12,943 × 16,188 pixels. The map title is Bray Quadrangle, which covers Bray,
California, USA (originally produced by the USGS in 1988 with revision by USDA
Forest Service in 2001). Each of the eight sections of the test map tiles has a similar
image dimension. Together the eight map tiles constitute the entire map scan. All
the deep learning models in the experiments in this section were trained on seven
map tiles and tested on the one remaining tile.

The test map (Bray Quadrangle) contains rich and diverse graphical compositions
and geographic features. For example, the test map contains geographic features
of railroads, elevation contours, rivers, roads, trails, highways, and buildings.
Figure 4.18 shows examples of geographic features in the test map. In addition,
the graphical compositions surrounding railroads in the test map are also diverse.
For example, in Fig. 4.19, there are elevation contour lines, highways, roads, and
hydrographic features around railroads on the test map. These complex composi-
tions of cartographic symbols make the test map an ideal test case of using a deep
learning semantic segmentation model for feature recognition from historical map
scans.

Fig. 4.17 The metadata and example sections of the test map (USGS historical topographic map.
Bray, California (circa 2001))
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Fig. 4.18 Examples of geographic features in the test map: railroads, elevation contour lines,
hydrography, highways, and roads (from left to right and top to bottom)

Fig. 4.19 Examples of the diverse background surrounding railroads (black lines with crosses) in
the test map

Training, validating, and testing semantic segmentation models require ground
truth data indicating the class label of each pixel in the test map (railroads vs. non-
railroads). The ground truth data were generated from manually created one-pixel-
wide railroad centerlines for the entire test map. After tracing the centerlines, the
one-pixel lines were then buffered using one pixel on each side to create three-
pixel-wide linear areas in an annotation image to represent the ground truth. The
annotation image has the same image dimension as the test map. In the annotation
image, the pixels in the buffered three-pixel-wide areas represent the approximate
locations of railroad symbols in the map, and other pixels represent non-railroad
content.6

6Note that using the centerlines with a buffer helps generate approximated pixel-wise annotations
of the railroad symbols efficiently, and manually annotating each railroad pixels in the map is
impractical even for one map scan.
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For training the semantic segmentation models in this section, the training data
were generated using the seven training map tiles and the annotation image. The
training map tiles and their corresponding areas in the annotation image were
cropped into small images of 320 × 320 pixels for batch training. The annotation
image provides a class label (railroads vs. non-railroads) for each pixel in the
training map tiles. The map pixel having its corresponding pixel in the buffered
railroad centerlines in the annotation image is a railroad pixel; otherwise, it is a
non-railroad pixel. For example, a map pixel at the location (x = 2, y = 3) (in the
image coordinates) is a railroad pixel if the pixel at the location (x = 2, y = 3) in
the annotation image belongs to the buffered railroad centerlines. In addition, the
cropped images were rotated four times with four angles randomly selected from
0 to 180◦ for training data augmentation to simulate railroads of various rotation
angles in the map.

In the testing phase, the test map tile was cropped using a sliding window with a
stride of 50 pixels. The trained segmentation models were then used to classify each
pixel in the cropped windows to determine railroad pixels.

All three sets of experiments use the conventional semantic segmentation metric,
Intersection over Union (IoU), to evaluate the extracted railroad layer from the test
map tile. IoU differentiates three types of pixels in the extraction results. The first
type is the correctly classified pixels: the true positives (TP). The second type is the
pixels that belong to railroads but misclassified as non-railroads: the false negatives
(FN). The third type is the pixels that belong to non-railroads but misclassified as
railroads: the false positives (FP). IoU is calculated as the number of TP divided by
the sum of the numbers of TP, FP, and FN.

4.5.2 Experiment I: The Impact of Backbone CNNs:
FCN-VGG16, FCN-GoogLeNet, and FCN-ResNet

To compare the impact of the architectures of CNN backbones in semantic
segmentation models for geographic feature recognition, three FCN variations were
tested, including FCN-VGG16, FCN-GoogLeNet, and FCN-ResNet (Fig. 4.13), all
with pre-trained weights from ImageNet using the pre-trained models from Keras.7

In the training phase, a number of 4800 training samples were randomly selected
from all training map tiles. The FCN models were initialized with their pre-trained
weights and then trained from the shallow layers using the map training data.

Table 4.1 shows the resulting IoU for the three FCN models on the test map
tile. Figure 4.208 provides the visualization of the test map with segmentation

7Keras is a high level deep learning Python library (https://keras.io) Currently, Keras provides a
number of pre-trained CNN models (using ImageNet) for image classification, including VGG16,
VGG19, ResNet, ResNetV2, ResNeXt, GoogLeNet, MobileNet, DenseNet, and NASNet.
8Figures A.1, A.2, and A.3 in the appendix show the full size results.

https://keras.io
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Table 4.1 Semantic segmentation results of FCN-VGG16, FCN-GoogLeNet, and FCN-ResNet
on the test map tile

FCN-VGG16 FCN-GoogLeNet FCN-ResNet

IoU 4.689% 11.79% 23.09%

results where red pixels represent false positives, and the blue pixels represent
true positives, and the black lines with crosses are railroads.9 The segmentation
results from the three models are consistent with their previous image classification
performance on ImageNet. The IoU of FCN-ResNet is over 100% higher than that of
FCN-GoogLeNet and over 500% higher than that of FCN-VGG. Figure 4.20 shows
that FCN-ResNet recognized railroads with diverse background (white, pink, and
green) compared to FCN-GoogLeNet and FCN-VGG (only detected a very small
portion of the railroads, e.g., small TP areas pointed by the white arrows). However,
the FCN-ResNet still only achieved a 23.09% IoU, which could be a result of the
lack of training data and the models’ limited capability for delineating accurate
boundaries and detecting small objects. For example, Fig. 4.20 shows that very often
the width of recognized railroads (the red pixels and the blue pixels) is much wider
than the width of railroads on the map (i.e., many red pixels, FP, around railroad
lines).

In sum, this first set of experiment shows that the choice of the CNN backbone
can have a significant impact on the segmentation performance, and the CNN
backbones with low error rates on image classification is a better option for semantic
segmentation on historical maps than the ones with a higher error rate.

4.5.3 Experiment II: The Impact of Transfer Learning
Strategies: PSPNet

The second set of experiments used a pre-trained PSPNet10 on PASCAL VOC 2012
and then fine-tuned the pre-trained model using various training strategies on map
data to demonstrate how transfer learning strategies could affect the recognition
results. In the training phase, PSPNet was initialized with the weights from the pre-
trained models and then trained from the shallow, middle, deep, and classification
layers11 with increasing amounts of training data (small, medium, and large sizes)
from historical maps. Table 4.2 shows the number of training samples in the small,
medium, and large sizes of training data after data augmentation. The training data

9The blue pixels are at the railroad locations in the map since they are correctly extracted railroad
pixels.
10https://github.com/hszhao/PSPNet/.
11Figure 4.16 shows the shallow, middle, and deep layers in the backbone CNN of PSPNet. The
red, green, and blue boxes represent shallow, middle, and deep layers, respectively.

https://github.com/hszhao/PSPNet/
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Fig. 4.20 Semantic
segmentation results using
FCN-VGG16,
FCN-GoogLeNet, and
FCN-ResNet (top left, top
right, bottom, respectively)
(FP in red and TP in blue).
The small figures next to each
big figures magnify a region
of the test map tile
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Table 4.2 The number of training samples in different sizes of the training data

Small Medium Large

Number of training samples 1200 2400 4800

Table 4.3 The PSPNet semantic segmentation IoU results

Classification layer Deep layer Middle layer Shallow layer

Small size training data 0% 0.9337% 1.527% 1.960%

Medium size training data 0% 3.078% 13.09% 26.35%

Large size training data 0% 2.612% 16.42% 29.04%

for each size were randomly selected from the seven training map tiles. The training
process used a batch size of 20 training images and stochastic gradient descent as
the optimizer with the learning rate as 0.0005. The binary cross-entropy was used
as the loss function. The model was trained with 300 epochs until convergence.

Table 4.3 shows the segmentation results in IoU from the various combinations
of training data sizes and transfer learning strategies. First, training from the shallow
layers outperformed all other training strategies with every training data size. This is
because the pre-trained model was trained on very different images from historical
map content, and hence training only a few layers (e.g., from the classification and
deep layers) with map data would not help recognize railroads from the test map
tile. Training from the shallow layers allows more parameters in the network to be
adjusted to learn feature representations for the target domain (i.e., railroads on the
test map tile).

As for the size of the training data, the IoU performance obtained by training
the small size of data was poor because the small size of training data could not
cover the diversity of the railroads in the test map tile. Figure 4.21 shows that
the segmentation model trained with the small size training data only recognized
a few railroad segments to the right of the test map tile. The IoU performance was
improved when the number of trainable parameters and the size of training data was
increased (Table 4.3 and Figs. 4.21, 4.22, and 4.23).12 In this experiment, the best
IoU was achieved with training from the shallow layers using the medium or large
size of training data (26.35% and 29.04%, respectively). However, the best results
are similar to that of FCN-ResNet, and all of the tested models and methods so far
have the same problem of inaccurate boundaries and wider extraction results than
the ground truth (i.e., many false positives).

In sum, because of the significant difference between images in public datasets
and historical map scans, only fine-tuning the classification or from deep layers
would not work. In addition, selecting the best transfer learning strategy depends
on the available size of training data and computing resource for training. Table 4.3
shows that IoU only increased slightly (26.35–29.04%) when using the large size

12Figures A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11, and A.12 in the appendix show the full size
results.
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Fig. 4.21 Semantic segmentation results (overlaying with the test map) using pre-trained PSPNet
with small size training data and trained from the shallow (top left), middle (top right), and deep
layers (bottom left) (FP in red and TP in blue)

training data instead of the medium size training data while training from the
shallow layers. This could mean that the medium size training data could already
represent the diversity of the railroads in the test map tile and using the large size
training data did not contribute to a significant improvement. As a result, training
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Fig. 4.22 Semantic segmentation results (overlaying with the test map) using pre-trained PSPNet
with medium size training data and trained from the shallow (top left), middle (top right), and
deep layers (bottom left) (FP in red and TP in blue)
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Fig. 4.23 Semantic segmentation results (overlaying with the test map) using pre-trained PSPNet
with large size training data and trained from the shallow (top left), middle (top right), and deep
layers (bottom left) (FP in red and TP in blue)
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a pre-trained model (from the public datasets) from the shallow layers using the
medium size training data can be the most efficient transfer learning strategy with
comparable results as using the large size training data. Training from the shallow
layers using the large size training data is the best transfer learning strategy if
resources are available.

4.5.3.1 Experiment III: Modified PSPNet

Although FCN-ResNet and PSPNet with an appropriate transfer learning strategy
could recognize diverse types of railroad pixels on the test map tile in the first and
second set of experiment, the delineated boundaries of railroads were still rough
with low IoU numbers. This is because these existing segmentation models and
the backbone CNNs have many convolutional and pooling layers, which makes
it difficult to recover the detailed spatial locations of objects, especially for small
objects in maps. The modified PSPNet with skip connections in VGG (Fig. 4.15)
combines both local and global information before the spatial pyramid pooling
module to overcome this difficulty.

In this experiment, the modified PSPNet was trained with the large size training
data for railroads from the shallow layers. The IoU performance of this model
was 62.22%, which significantly outperformed other models tested in this section
(29.04%). Figure 4.24 shows that, with the modified PSPNet, the recognized
boundaries (the red and blue lines, false positives and true positives, respectively)
are much closer to the boundaries of railroads than the results from all other models

Fig. 4.24 Semantic
segmentation results
(overlaying with the test map)
using the pre-trained,
modified PSPNet large size
training data and trained
from the shallow layers (red:
FP; blue: TP; black lines with
crosses: railroads)
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tested in this section. However, an IoU of 62.22% still would not be able to generate
usable railroad data from historical maps, and more advanced methods are required
to extract boundaries of small objects from historical map scans accurately.

4.6 Chapter Summary

This chapter introduced an overview of deep-learning semantic segmentation
models and transfer learning strategies and discusses their strengths and weaknesses
concerning geographic feature recognition from historical map scans. This chapter
also presented a comprehensive experiment on geographic feature recognition from
historical maps using railroad features and USGS historical topographic maps as
a case study. The experiment showed that for geographic feature recognition from
historical maps, fine-tuning the classification or middle layers of pre-trained models
alone would not work, no matter the size of the training data from the target
domain. The best recognition results (high true positives and low false positives)
can be achieved by fine-tuning the entire network with large amounts of training
data. These experiments demonstrated that state-of-the-art semantic segmentation
models still do not allow to delineate the precise boundaries of geographic features
in historical maps, even with some modification to preserve the local information.
To fully take advantage of the valuable content in historical map series, advanced
semantic segmentation methods that can handle small objects and extract precise
boundaries still need to be developed. However, the studies described here provide
interesting directions and significantly improved recognition results.
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Chapter 5
Summary and Discussion

Abstract This chapter summarizes the book and provides a brief outlook.

5.1 Book Summary

This book presented the challenges and best practices in working with digital his-
torical maps in geospatial environments, aiming to bridge the gap between the user
and developer communities of map processing technologies. Historical maps are
unique witnesses of the evolution of the past landscape, cultural heritage, and human
activities. They are valuable for researchers in a variety of communities ranging
from urban geography to landscape ecology. However, extracting information from
historical maps to make it available as spatial layers in Geographical Information
Systems (GIS) remains a major challenge. This is because of the complexity of the
map contents, the low graphical quality of scanned map documents, and the sheer
data volume considering that millions of scanned maps have been made publicly
available by various mapping agencies and private institutions.

Over several decades, map processing research has focused on technical and
methodological solutions to preprocess map scans, extracting map layers efficiently,
and georeferencing map sheets. These research advances, at the intersection of
computer science and geographic information science, provided the basis for the
development of semi- and fully automated map processing solutions with remaining
limitations. On the one hand, fully automated map processing solutions often only
handle specific types of historical maps and graphical conditions. On the other
hand, semi-automated solutions often handle various types of historical maps and
graphical conditions but do not scale well for processing large numbers of maps.
These persistent limitations impede the extensive use of historical map data in
research that involves large geographical extents or long periods of time. Even
with recent advances in machine learning for pattern recognition, remote sensing,
and computer vision, those limitations remain unsolved, mainly because such
techniques do not perform well on processing historical map documents without
further adjustment. The main reasons are the general lack of useful training data
necessary for successful learning of the graphical characteristics of map layers and
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symbols, and the high accuracy requirements in extracting boundaries of highly
detailed, irregular, and small geospatial features from maps. This is significant
because the user of spatial information expects high accuracy, high precision, and
high degrees of completeness, which is different from most other recognitions tasks.

Current efforts show promising results in tackling these issues in map processing
by incorporating contextual data, directly or indirectly, as training data and through
multi-scale deep-learning architectures for semantic segmentation that show high
accuracies and have the potential to preserve object boundaries at a fine spatial
resolution. Further advances in map processing and recognition will result in the
creation of geospatial data collections representing map contents and firmly connect
the user and developer communities thus generating exciting research opportunities
enriched by unique historical information from maps. These research opportunities
will advance our knowledge of the socio-environmental systems and their changes
over long time periods. Thus, future research will be able to evaluate implications
and long-term effects of human activities in unprecedented ways by getting access
to 200 years’ worth of data layers describing the evolution of the landscape.



Appendix A
Railroad Recognition Results

See Figs. A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11, A.12, and A.13.
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102 A Railroad Recognition Results

Fig. A.1 FCN-VGG16 semantic segmentation results overlaying with the test map (red: FP; blue:
TP; black lines with crosses: railroads)
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Fig. A.2 FCN-GoogLeNet semantic segmentation results overlaying with the test map (red: FP;
blue: TP; black lines with crosses: railroads)
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Fig. A.3 FCN-ResNet semantic segmentation results overlaying with the test map (red: FP; blue:
TP; black lines with crosses: railroads)
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Fig. A.4 Semantic segmentation results (overlaying with the test map) using pre-trained PSPNet
with small size training data and trained from the deep layer (red: FP; blue: TP; black lines
with crosses: railroads)
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Fig. A.5 Semantic segmentation results (overlaying with the test map) using pre-trained PSPNet
with small size training data and trained from the middle layers (red: FP; blue: TP; black lines
with crosses: railroads)
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Fig. A.6 Semantic segmentation results (overlaying with the test map) using pre-trained PSPNet
with small size training data and trained from the shallow layers (red: FP; blue: TP; black lines
with crosses: railroads)
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Fig. A.7 Semantic segmentation results (overlaying with the test map) using pre-trained PSPNet
with medium size training data and trained from the deep layer (red: FP; blue: TP; black lines
with crosses: railroads)
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Fig. A.8 Semantic segmentation results (overlaying with the test map) using pre-trained PSPNet
with medium size training data and trained from the middle layers (red: FP; blue: TP; black
lines with crosses: railroads)
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Fig. A.9 Semantic segmentation results (overlaying with the test map) using pre-trained PSPNet
with medium size training data and trained from the shallow layers (red: FP; blue: TP; black
lines with crosses: railroads)
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Fig. A.10 Semantic segmentation results (overlaying with the test map) using pre-trained PSPNet
with large size training data and trained from the deep layer (red: FP; blue: TP; black lines with
crosses: railroads)
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Fig. A.11 Semantic segmentation results (overlaying with the test map) using pre-trained PSPNet
with large size training data and trained from the middle layers (red: FP; blue: TP; black lines
with crosses: railroads)
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Fig. A.12 Semantic segmentation results (overlaying with the test map) using pre-trained PSPNet
with large size training data and trained from the shallow layers (red: FP; blue: TP; black lines
with crosses: railroads)
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Fig. A.13 Semantic segmentation results (overlaying with the test map) using the pre-trained,
modified PSPNet large size training data and trained from the shallow layers (red: FP; blue:
TP; black lines with crosses: railroads)
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