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ABSTRACT ARTICLE HISTORY

With large amounts of digital map archives becoming available, Received 15 May 2018
automatically extracting information from scanned historical maps Accepted 25 November 2019
is needed for many domains that require long-term historical geo- KEYWORDS

graphic data. Convolutional Neural Networks (CNN) are powerful Vector-to-raster alignment;
techniques that can be used fo]' extracting locations of_geogrz?\p.hlc reinforcement learning;
features from scanned maps if sufficient representative training USGS historical topographic

data are available. Existing spatial data can provide the approxi- maps; digital map
mate locations of corresponding geographic features in historical processing; digital
maps and thus be useful to annotate training data automatically. humanities

However, the feature representations, publication date, production
scales, and spatial reference systems of contemporary vector data
are typically very different from those of historical maps. Hence,
such auxiliary data cannot be directly used for annotation of the
precise locations of the features of interest in the scanned historical
maps. This research introduces an automatic vector-to-raster align-
ment algorithm based on reinforcement learning to annotate pre-
cise locations of geographic features on scanned maps. This paper
models the alignment problem using the reinforcement learning
framework, which enables informed, efficient searches for matching
features without pre-processing steps, such as extracting specific
feature signatures (e.g. road intersections). The experimental results
show that our algorithm can be applied to various features (roads,
water lines, and railroads) and achieve high accuracy.

1. Introduction

Historical maps store valuable information documenting human activities and natural
features on Earth over long time periods (Uhl et al. 2018b). With increasing access to
inexpensive and efficient digitalization technology, many organizations have scanned
tens of thousands of historical maps and stored them in digital map archives. While these
efforts ensure the preservation of important historical documents, using the map con-
tents as geographic information layers in an analytic environment requires advanced
technologies for the automatic detection and vectorization of geographic features from

CONTACT Weiwei Duan ) weiweidu@usc.edu
© 2019 Informa UK Limited, trading as Taylor & Francis Group


http://orcid.org/0000-0001-9180-4853
http://orcid.org/0000-0002-4861-5915
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2019.1698742&domain=pdf&date_stamp=2020-03-04

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE @ 825

large numbers of map images (Chiang et al. 2014, Chiang and Knoblock 2015, Ostafin et al.
2017). Convolutional Neural Networks (Krizhevsky et al. 2012, Razavian et al. 2014,
Simonyan and Zisserman 2015, Chen et al. 2018) have shown impressive performance
in object segmentation (i.e. detecting precise locations of individual objects in images) in
public image recognition datasets (such as PASCAL-Context") and more recently, in
extracting geographic features from historical scanned maps (Duan and Chiang 2017b,
Uhl et al. 2018a). However, one of the major challenges in using CNN for map processing is
how to efficiently generate a sufficient amount of representative training data. Manually
annotating training samples can be accurate but highly time-consuming.

Recent studies have developed a segmentation model for railroad features using more
than 10,000 training samples (Duan et al. 2017a) and identified a need to generate a much
larger amount of representative training data automatically. One possible solution to
facilitate the automatic collection of training samples is the use of data representing the
geographic feature of interest from other sources to annotate the corresponding loca-
tions in historical maps. In this approach, the system can label training samples auto-
matically using these external data, assuming they are aligned well with the content in the
map. For example, Figure 1 demonstrates how to use external data to generate annota-
tions for training samples. In Figure 1(a), the violet lines are the external railroad vector
features, and the black lines with crosses in the underlying historical map image are the
railroad feature representations. Figure 1(b) is a training sample, within which the content
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Figure 1. An example demonstrating how to automatically generate railroad training samples for
detecting railroads using auxiliary vector data. (a) Historical map and overlaid contemporary railroad
data (the violet line) assumed to be aligned with railroads in a historical map, (b) map sample cropped
in a focal window along the railroad line, showing the railroad symbol in the map as a black line with
crosses, (d) is the labels for all pixels in (b). The pixel labeled as white in (d) if it overlaps with the vector
data (shown in (c)), otherwise black.
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of the map is extracted by the vector data shown in Figure 1(c). The extracted contents are
used to create labels for pixels on the map. Figure 1(d) is a label for the training sample
(Figure 1(b)). White color represents railroad pixels, while black means non-railroad pixels.
However, often contemporary vector data (e.g. from the US Census Bureau) can only
provide the approximate locations of geographic features in scanned historical maps
(Figure 2) due to misalignment.

There are three main causes of this misalignment. First, distortion can be introduced by
projection inconsistency, georeferencing, and scanning (Uhl et al. 2017, 2018b). The
projection and the geodetic datum may be different between the two datasets. These
differences can result in feature misalignment when converting from one projection to
another (Figure 2(a)). Distortions can further be elevated by deformations of the paper
map, scanner mis-calibration, and inaccuracies in the georeferencing process (Uhl et al.
2018b). Second, datasets can adopt different geometric representations for the same
geographic features. For example, in Figure 2(b), the streams are represented as blue
curved lines on the map but straight lines in the vector data, due to different degrees of
cartographic generalization (shown in red). Third, geographic features change over time.
For example, Figure 2(c) shows an example in which the contemporary vector data (the
red line) represent the new road that did not exist in the historical map. Or, a railroad
could exist in the historical map but not in the contemporary data if it has been removed.
To overcome the positional offset problems between maps and auxiliary data, in this
paper we introduce a vector-to-raster alignment algorithm, which aligns georeferenced

) ©)

Figure 2. Examples show the misalignment between contemporary vector data (red lines) and content
in historical maps (pointed at by white arrows). The misalignment could be caused by (a) different
spatial reference systems, (b) different feature representation, or (c) inconsistent content due to
different publication dates e.g. new roads. (d) and (e) are a zoom-in figures of (a) and (b) respectively.
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contemporary vector data to scanned historical maps, thus supporting automatic training
data collection for feature extraction from maps.

The proposed vector-to-raster alignment algorithm, based on a reinforcement learning
framework, aims at matching georeferenced vector data with their corresponding repre-
sentations in georeferenced map images. Previous studies (Chen et al. 2006, Song et al.
2013, Ruiz-Lendinez et al. 2017) have focused on the identification of ‘feature signatures’
to represent the geographic features and used these signatures (e.g. intersections of
roads) as the key elements for the matching process. However, the use of feature
signatures constrains the applicability of the methods to few geographic features. Other
work (e.g. Tong et al. 2009) tested matching representations of different types of geo-
graphic features, requiring human intervention to generate the feature signatures.
Human intervention makes the methods impractical if the goal is to scale the process
to thousands of maps in a typical map archive. The presented vector-to-raster alignment
algorithm is designed to handle various geographic features without human interven-
tions. Developing such an algorithm raises the question on how to automatically and
efficiently match geographic features of various representations found in heterogeneous
data sources (e.g. matching railroads in the historical scanned map and contemporary
vector data) and what matching criteria could be defined to guide this process. The
reinforcement learning framework provides a possible solution to these questions. In this
framework, an agent finds an efficient solution to a problem, guided by rewards. For
example, to enable a robot to find the shortest path from the entrance to the exit in
a maze, the robot receives a reward for each step taken. The rewards will guide the robot
to find the shortest path, efficiently. After multiple trials in discovering possible paths to
the exit, the robot will identify and memorize the shortest path to exit the maze. For the
vector-to-raster alignment problem, a reward is defined based on the matching quality
between the vector feature and the geographic feature of interest in the map image. The
alignment process guided by the rewards is more efficient than a brute-force search for
matching and does not require human intervention or specific feature signatures (e.g.
road intersections). We will explain the reinforcement learning framework in detail in
Section 3 and describe its applicability to the vector-to-raster alignment problem in
Section 4. Section 5 will show the alignment results of contemporary vector data with
their respective representations in georeferenced historical maps for railroads, hydro-
graphic features (streams), and roads.

2. Related work

In this paper, we present an algorithm that automatically aligns vector data to geographic
features in georeferenced historical scanned maps. Some prior studies on such related
tasks focus on the conflation problems (Chen et al. 2006), registration and co-registration
problems (Le Moigne et al. 2002), and other specific challenges (Wu et al. 2007, Wu 2011).
Conflation aims to generate a new dataset by integrating multiple input datasets repre-
senting the same region, while registration attempts to geocode an image to a specified
spatial reference system. In contrast, the goal of alignment in a more geospatial sense is to
make multiple geographic layers align correctly. Because of the commonalities between
these approaches, we briefly summarize the existing work for conflation, registration, and
alignment next.
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Some existing methods (Chen et al. 2006, 2014, Wu et al. 2007, Wu 2011, Song et al.
2013) specifically work on roads. They used the intersection as the specific feature
signature to integrate road vector data with high-resolution images. The common limita-
tion of their methods is that they can only apply to roads or other geographic features
containing intersections. Chen et al. (2006) proposed an algorithm that can automatically
conflate road vector data with ortho-imagery. Their method first detects matching inter-
section point pairs from the two datasets and then generates a local transformation
matrix for conflation based on the matched pairs. Their method can only apply to roads
because they use intersections, the specific characteristic of roads, to align road vector
data with imagery. Some other methods (Song et al. 2013, Chen et al. 2014) used different
approaches to detect intersections of roads. For example, Chen et al. (2014) used a binary
road mask to extract all road-like pixels and then used a junction template to classify road
vector points as junction or non-junction. Wu et al. (2007) proposed an algorithm dealing
with the alignment of road vector data and aerial imagery. Their method used a least-
squares optimization to find the best translation for the road vector data to align with the
roads on imagery. However, their algorithm also used the road intersection as the specific
signature to detect roads on imagery. Compared to their methods, our approach can
apply to various types of geographic features (e.g. railroads, water lines, roads).

Although some alignment approaches (Tong et al. 2009) can apply to various geo-
graphic features, they involve manual steps. Tong et al. (2009) built a probability-based
multi-measure feature matching method for map conflation. However, their approach
requires a manual step to extract representations for geographic features. In contrast, our
methods do not require human intervention.

Researchers also use agent-based models to solve problems in geographic sciences.
Agent-based modeling and reinforcement learning share similarities. For example, Touya
et al. (2018) used multi-agent systems for cartographic generalization. The goal of carto-
graphic generalization is to derive a smaller-scale map from a large-scale map by trans-
forming the geographic features on the large-scale map to adjust them into the small
scale map representations without feature conflicts such as buildings that overlap with
roads. In a multi-agent system, for example, one agent represents buildings, and the other
represents roads. The agents take actions to resolve the conflict. The knowledge base
used by the agents helps decide what action the agents will take. After taking action, the
agents estimate if they are closer to the aim of resolving the conflict. Since the system has
multiple agents, actions taken by an agent can be influenced by other agents. Each agent
in multi-agent systems can be implemented by reinforcement learning when modeling
agent behavior and learning based on actions of the agent. In contrast to such complex
multi-agent systems, for our alignment problem, there is only one agent, the external
vector data. Vector data take actions to align with the geographic feature of interest on
the map using reinforcement learning as explained in more detail below.

3. Introduction of reinforcement learning

Reinforcement learning (Kaelbling et al. 1996, Kober et al. 2013, Sutton and Barto 2018) is
a machine learning process in which an agent interacts with the environment by taking
actions to earn the maximum cumulative rewards. A reinforcement learning model uses
the reward as the signal, which is different from the supervising function in supervised
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learning, to indicate how well the agent is doing after each step. Here, we briefly
introduce the terminology used in the reinforcement learning framework and use the
maze problem as an example to show that the reinforcement learning can efficiently find
solutions.

3.1. Agent

An agent takes actions within the environment. The learning algorithm controls the
agent. For example, the robot is the agent in the maze example.

3.2. Environment

The environment is where the agent takes actions. In our example, the maze is the
environment. The environment defines the current state and, based on an action of the
agent as the input, allows computing the reward and returns the next state.

3.3. State

A state is a situation for the agent in the environment. For the maze problem, a location of
the robot in the maze is a state.

3.4. Episode

An episode is a set of actions from the starting state to the terminal state. For the maze
problem, the starting state is the robot located at the entrance, and the terminal state is
the robot located at the exit.

3.5. Action

An action is a movement that the agent can take at a given state in the environment. For
the maze problem, the robot can move up, down, left or right, or stay at the same location.

3.6. Reward

A reward is a value that measures the contribution of an action taken by the agent at
a given state to accomplish the goal.

An advantage of reinforcement learning is that it can efficiently find the solution to the
problem. Solving the maze problem is a typical learning process that can greatly benefit
from reinforcement learning. In each episode, the robot moves from the entrance (the
start state) to the exit (the terminal state) receiving the reward in each state. After several
episodes, the robot finds the shortest trajectory from the entrance to exit according to the
cumulated rewards. Osmankovi¢ and Konjicija (2011) prove that the learning algorithm
(the Sarsa algorithm created by Sutton (1996)) reduces the search time for finding the
optimal trajectories in mazes of different sizes, compared to brute-force methods. Table 1
compares the number of iterations using the reinforcement learning method and the
brute force search.
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Table 1. The average number of iterations based on the Sarsa algorithm
compared with brute-force searches.

Maze Iterations for reinforcement Iterations for brute-force search in the
Size learning worst case

5%5 2587.4 2.2¥10'°

77 39725 6.3*10%

9%9 5822.7 1.2¢10%

11*11 10,755.4 1.4%10%

4. Vector-to-raster alignment algorithm based on reinforcement learning

This section first introduces how to model the vector-to-raster alignment problem using
the reinforcement learning framework, then defines the reward function, and presents the
proposed alignment algorithm.

4.1. Modeling the alignment problem within the reinforcement learning
framework

4.1.1. Agent

The agent is a subset of the entire input vector data. For example, the entire railroad
vector data to be aligned with a map can be divided into five subsets. Each subset is an
agent covering a neighborhood in the map

4.1.2. Environment
The historical scanned map is the environment within which the vector data moves.

4.1.3. State

The position of the vector data on the scanned map is a state. The starting state for our
alignment problem is the position of the contemporary vector data on the map (poten-
tially misaligned). The terminal state is the position of vector data aligned to the geo-
graphic feature of interest in the map.

4.1.4. Episode
One episode is the process of aligning a subset of the entire input vector data (i.e. an
agent) to the geographic feature of interest on the map.

4.1.5. Action
Action is the movements of all vector points in the vector data. We define nine possible
movements for each vector point: staying at the current position and moving towards any
of the cardinal or intercardinal directions (north, south, west, east, northwest, northeast,
southwest, and southeast). The eight directions are assumed to be sufficient to guide the
vector data to find the corresponding geographic feature on the map but could be
increased as needed. However, more than eight directions might not help improve the
alignment performance but take more time to process. Section 4.3 will discuss the
number of movement directions as a factor that influences the efficiency of our algorithm.
Figure 3 illustrates examples of states and their possible actions. The green line with
red points is the railroad vector data. The black line with crosses is a segment of the
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Figure 3. Examples of states and actions. The green line is the railroad vector data, red points are
vector points, and yellow arrows are possible movements. The black lines with crosses below the
green line are railroad lines. (a) is the starting state. In (b), the action is P1 moves towards north, P2
and P3 stay at the original position. The action in (c) is P1 moves towards north, P2 moves towards
south, and P3 stays at the original position.

railroad line on the scanned map. The goal is to align the vector line to the railroad on the
map. The yellow arrows at each point denote the available movements that each vector
point can take. Besides the movements denoted by the yellow arrows, each point could
stay at the original position. The action is the movements of all points. Figure 3(b,c) show
examples of one action. For example, the action in Figure 3(b) is that P, moves North, P,
and P stay in the original position.

Here we briefly explain the method for finding the possible movements for each vector
point for the vector-to-raster alignment.? First, the color range of the geographic feature
of interest will be detected. Second, the locations of the geographic features (the fore-
ground) in the map images will be extracted around each vector point. Third, possible
movements will be identified for each vector point.

The dominant foreground color of the pixels close to the vector data should represent the
corresponding feature symbol (if present) since the vector data are assumed to be close to the
corresponding geographic feature in the map. Hence, the method uses ‘growing’ buffers from
the vector data to identify the dominant color of nearby pixels as the color of the correspond-
ing geographic feature. The dominant color in the first few buffers is presumed to be the color
of the corresponding geographic feature. When the buffer size increases, the dominant color
changes to the background color or the color of another nearby geographic feature. Figure 4
illustrates the process of detecting the railroad color. The second step takes the color range of
the geographic feature of interest and a sub-image as inputs. Each sub-image is generated by
using a vector point as the center to crop the map image within a defined window. Thus,
a sub-image represents the neighborhood of a vector point location on a map, which is
expected to include the target geographic feature. Figure 5(a) is an example of a sub-image.
Our method applies the GrabCut algorithm (Rother et al. 2004) on sub-images to extract
geographic features around vector points (Figure 5(b)). In the third step, if a geographic
feature could be extracted in the second step in a certain cardinal or intercardinal direction of
the vector point located at the center of the sub-image, our method defines a movement for
that vector point towards the closest graphic feature along the same direction. If no geo-
graphic feature has been detected by step two along any given direction, movement of the
vector point in that direction will not be considered. Figure 5(c) shows an example of available
movements of a vector point. Each arrow represents a possible movement. The vector point
cannot find any foreground pixel in the west and northwest directions, eliminating those
directions as possible movements. If a vector point does not have any movements except
staying at the original position on the map, our algorithm assumes it is a new feature that does
not exist in the map and removes it.
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Figure 4. The illustration of detecting the color of railroads using growing buffers. When the buffer
size increases, the dominant color changes. The red, yellow, and blue polygons show the overlapping
areas of 1-, 3-, and 5-pixel buffers and the map, respectively. When the buffer is 1 pixel and 3 pixels,
the dominant color is the color of railroads. When the buffer extends to 5 pixels, there are more
background pixels. Since the railroad vector data are around the railroads in the map, the dominant
color in the first few buffers (1-pixel and 3-pixel buffer) are assumed to be the railroad color.

©

Figure 5. An example of how our method finds possible movement directions for a vector point. (a)
shows a sub-image using a railroad vector point as the center. (b) is the foreground of (a) after
applying Grabcut. In (c), the blue arrows represent possible movements for the vector point (the red
dot in the center).

4.2. The reward function

The reward function in our alignment algorithm guides the agent (the vector data) so that
the process of aligning the vector features to the feature representation in the map is
efficient. The design of the reward function is based on the color principle in cartography.
Color is a distinguishable property for geographic features and remains consistent over
map editions. For example, the United States Geological Survey (USGS) topographic map
archive uses blue for hydrography, black for roads, and brown for contour lines. Hence,
the intuition of the reward design is that the colors of the pixels underlying the vector line
on the map should be consistent and describe the color of the corresponding geographic
feature if the vector data align perfectly with the geographic feature in the map.?
Alternatively, the most straightforward way to define the reward is to check if all pixels
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on the map overlapping with vector data are the color of the geographic feature of
interest. However, the movements found by the method introduced in the previous
subsection cannot guarantee to align vector data to the centerline of the geographic
feature. Some vector segments may align with the edge of the geographic feature. In such
cases, some background pixels surrounding the geographic feature of interest on the map
overlap with the re-positioned vector data. For example, in Figure 6, some vector seg-
ments (the green line) align with the background on the map in the right enlarged view.
Therefore, determining the pixel colors on the map that overlap with the vector data as
the reward is not accurate in this case. The reward function assigns negative values when
a given number of background pixels align with some vector segments even though the
vector data also align with the corresponding geographic feature on the map. Since this
edge problem is often minor, the reward function should have the capacity to ignore
a few background pixels aligned with the vector data.

Instead of directly using the colors of individual pixels underlying the vector segment to
generate the reward, our algorithm groups the pixel colors into clusters using a standard
K-mean algorithm to detect the dominant pixel colors overlapping with vector segments. If
one of the cluster centroids is out of the color range of the target map feature, it indicates
that some large portion of the vector segment is not well aligned with the target map
feature. Figure 7 shows the pseudocode of the reward function. If a centroid is not within
the color range of the target map feature, the reward for the segment is 0; otherwise, it is 1.

4.3. The vector-to-raster alignment algorithm

Figure 8 shows the pseudocode of our alignment algorithm. The algorithm takes georefer-
enced vector data and scanned topographic historical maps made based on modern
cartography as inputs and outputs the aligned vector features. Since the features in two
datasets can have significantly different geometric properties (e.g. straight lines vs. curves),
our alignment algorithm first densifies (i.e. increases the resolution by increasing the

Figure 6. The green line is the aligned railroad vector data. The right figure is the enlarged view of the
sub-image within the red box in the left figure. The line segment aligns with the edge of the railroad
line on the map, which leads to some background pixels overlapping with the vector data.
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Reward (start_point, end point):
color_list = color(state_point, end point)
centroids = Kmean(color_list, 2)
if any centroid not in the range of the geographic feature color:
return 0
return 1

Figure 7. The pseudocode of the reward function.

Input: a subset of vector data /' containing a set of points, the geographic feature F,
a scanned map M
Output: aligned vector data
[p1, p2, ..., pn] = Interpolation(points, interpolate_distance)
Randomly choose action « in the starting state
While 7 do not align with F'
Take action a in s, observe the reward r, the next state s’

Choose next action a’= max[Reward vector(s' after taking a')],
s es,a<a
Align V' with F according to a

Reward_vector(vector):
for each segment Si in vector:
Ri = Reward(S))
LR;

return ——
#Segments

Figure 8. Our vector-to-raster alignment algorithm.

number of vertices) each segment of the vector polylines so that our algorithm can
accommodate different representations of the same geographic feature. For example,
there are more curves in water lines than railroads, so our algorithm densifies the water-
lines vector data by interpolating vector points every 15 pixels after overlapping the vector
data with the map, while interpolating vector points every 30 pixels for railroad vector data.
Figure 9 shows an example of densifying vector points in the water-line vector data to
accommodate the sinuosity of water lines in the map. After the densification process, the

Figure 9. The densification process helps to accommodate the straight line segments representing water
lines in vector data to the curved representations (the blue lines) in the scanned map. (a) shows the vector
data (the red line) and the waterline (the blue line) on the map. (b) is the vector data after densification. (c)
shows the vector data (the red line) aligned to the water line represented as the curve in the map.
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vector data take actions on the map guided by the reward function. Our algorithm gives
each state (the position of vector polyline on the map) a reward to quantify how close the
state to the final alignment state is after taking action. The reward for a vector polyline is the
sum of all individual rewards of vector segments divided by the total number of segments in
the vector polyline. Our algorithm calculates the reward for each segment in the vector
polyline by the reward function introduced in Section 4.2. The reward ranges from zero to
one. Our alignment algorithm always chooses the action with the maximal cumulative
reward. In contrast, traditional reinforcement learning methods such as the Q-learning
approach proposed by Watkins and Dayan (1992), typically have a small probability of
choosing a random action. Our goal is to find a solution to align the vector data to the
corresponding geographic feature on the map accelerated by the reward function, while
the goal for Q-learning is finding the fastest solution. Consequently, our algorithm only
requires running one episode instead of multiple episodes to find the fastest alignment
solution. Therefore, using the greedy method to choose the actions is more efficient for our
problem than the method for Q-learning.

We use an example in Figure 10 to illustrate our alignment algorithm. The two black lines
are the geographic features on the map, the green line is the vector data, and the red points
are the vector points. The goal is to align the green vector line with the black bottom line.
Given that the target representation is south of the green line and without loss of generality,
the points here only have five types of possible movements: staying at the current position,
represented as origin, or moving towards four possible cardinal directions (north, south,
west, and east). Actions are the set of movements of all points represented by a list. The
green line aligns with the black line after three iterations in Figure 10. In each iteration, our
algorithm tries to move one vector point to maximize the reward and records all move-
ments of vector points as the action for the state. Using reinforcement learning to search an
alignment solution is much more efficient than using the brute-force search. For example, if
we use brute-force search for alignment in Figure 10, we need to run a maximum of
possible 125 iterations (three points, each has five possible actions, so the total possible
actions are 5°) to align the vector line with the geographic feature in the map. In contrast,
our vector-to-raster alignment algorithm can solve this problem in three iterations, guided
by rewards.

In addition to the reward function there are three other major factors that have an
impact on the efficiency of our algorithm. To discuss the efficiency of the algorithm, we
assume that our algorithm applies to the same geographic feature in the same region,

So S1 Sz 83 (Goal)
P1 P2 P3 P2 P3 P3
o P1 A P1 F’.Z/ PI P2 P3
R=0 R=05 R=1

A, = (South, Origin, Origin) A, = (South, South, Origin) A;= (South, South, South)

Figure 10. An example of the alignment process. In the action set (A1, A2, A3), each element
represents the movement of vector point sharing the same index. For example, (South, Origin,
Origin) in A1 represents that P1 moves towards South, P2 and P3 stay at the original position. The
starting state does not have a reward, because there is no action in the starting state.
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which may have different representations on different maps. The first factor is the number
of vector points (vertices) during the densification process. Our algorithm inserts vector
points to fit the geometry of the corresponding geographic feature on the map. The
number of vector points has a positive correlation to the algorithm processing time. For
example, if the vector data after the densification process have ten vector points, and each
vector point has nine movements, the total number of movement combinations is 10°. If
the vector data have five vector points, the total number of movements combinations
reduces to 5°. Therefore, our algorithm takes a shorter time to find the solution to
alignment in the 5-vector-point case than the 10-vector-point case. The second factor is
the map dimension. The map dimension determines the size of the geographic feature
given the same coverage area. For example, the same railroad segment is shorter in a small
dimension map than a large dimension one. After the densification process, fewer vector
points are needed for the same railroad segment in a small dimension map than in a large
dimension one. Hence, our algorithm is more efficient for small dimension maps than large
dimension ones. The third factor is the number of movements. Our algorithm defines nine
movements for each vector point. If we reduce the number of movements to five, the
number of movement combinations also reduces, which leads to a reduced search space.
The smaller the search space, the shorter the processing time of our algorithm.

5. Experiment and analysis

This section first describes the geographic features and maps used in the experiment and
then introduces the experiment settings and evaluation metrics. After that, the section
presents the experiment results and accuracy assessment.

5.1. Experiment data

We tested the proposed alignment algorithm for three geographic features (railroads,
water lines, and roads) on three scanned historical maps. These three maps cover Bray,
California (circa 2001), Louisville, Colorado (circa 1965), and Boulder, Colorado (circa 1966),
respectively. The map scale of all test maps is 1:24,000. Each pixel on the test maps
represents around one square meter. We tested the alignment of water lines in the Bray,
Louisville, and Boulder maps, the alignment of railroads in the Bray and Louisville maps,
and the alignment of roads in the Bray map. We downloaded the historical maps as TIFF
images from the USGS topographic historical map archive (https://nationalmap.gov/) and
contemporary vector data as ESRI shapefiles from the US Census Bureau website (https://
www.census.gov/) for railroads and the USGS website (https://nationalmap.gov/) for
water lines and roads.

The test geographic features are represented by graphical symbols of a variety of
geometric characteristics. Figure 11 shows the symbols for railroads, water lines, and
roads in the test maps. Railroads are represented as black lines with crosses (Figure 11(a)).
Water lines are represented as blue lines of three kinds of symbols indicating different
types of hydrographic features. They are solid blue lines (Figure 11(b)), solid blue lines
with blue dots between them (Figure 11(c)), and blue dashed lines (Figure 11(d)). There
are multiple symbols for different categories of roads as well (Figure 11(e-g)).


https://nationalmap.gov/
https://www.census.gov/
https://www.census.gov/
https://nationalmap.gov/
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Besides the diverse geographic feature representations, each test map covers a large area
(i.e. a city in the US) and contains rich and diverse graphical conditions. Figure 12 shows the
graphically diverse neighborhoods around railroad features on the Bray map, including
elevation contours, gravel roads, regular roads, and wetlands. The varying representations
of geographic features and graphical conditions in these maps represent the degree of
heterogeneity in the USGS topographic historical map archive. In the next subsections, we
will describe the evaluation metrics and evaluate the performance of our algorithm applied
to various geographic feature representations and graphical neighborhoods.

5.2. Experiment setting and evaluation metrics

This section discusses the hyperparameters used in the experiment and the evaluation
metrics. For densification of the vector polylines, our algorithm added points every 30
pixels for railroads and roads and every 15 pixels for water lines, because there are more
curves in water lines than railroads and roads, as explained before. After that, our
algorithm used a 50*50-pixel window to crop sub-images from the input map to find
possible movement for each vector point (including the interpolated points).

We used correctness and completeness (Heipke et al. 1997) as the metrics to evaluate the
alignment results. Correctness is the length of true positives divided by the sum of the
length of true positives and false positives, and completeness is the length of true positives
divided by the sum of the length of true positives and false negatives. Figure 13 illustrates
the correctness (top) and completeness (bottom). Correctness shows the percentage of the
correctly aligned line features with the geographic feature of interest on the map.
Completeness shows how much of the geographic feature of interest on the map correctly
aligns with the repositioned vector data. We calculated the two measures for various buffer
sizes to accommodate for varying symbol widths of the geographic feature of interest. We
manually aligned the vector data to the centerlines of the geographic feature of interest on
the maps to create reference data for our evaluation.*

R, =
7/__.

Figure 11. Examples of geographic features symbols in the test maps: (a) railroads, (b)-(d) water lines,
and (e)-(g) roads.

Figure 12. Examples of graphically diverse neighborhoods around railroads in the Bray map.
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Figure 13. The illustration of correctness and completeness (the red line is the aligned result, and the
green line is the reference.).

5.3. Experiment results and analysis

Tables 2-4 show the alignment results for railroads, water lines, and roads in the test maps
compared to the contemporary vector data. The aligned vector data (‘aligned’) refer to the
vector data processed by our alignment algorithm, and the contemporary vector data
(‘original’) refer to the vector data downloaded from the US Census and USGS websites.
Figure 14 shows example results for railroads, water lines, and roads over large areas. In
general, we can see that our algorithm could handle various misalignment cases and
geographic feature symbols. For example, our algorithm could handle the misalignment
caused by projection-related distortion (Figure 14(a)), the misalignment caused by existing
water lines that do not exist in the map by removing them (Figure 14(b)), and the

Table 2. The alignment results for railroads compared with the contemporary (original) vector data
(the width of the railroads is 5 pixels and 3 pixels in the Bray and Louisville maps, respectively).

Buffer (pixels) 1 3 5 7
Bray Correctness Original 5.32% 16.17% 29.88% 46.03%
Aligned 36.53% 86.57% 97.32% 98.83%
Completeness Original 4.38% 16.39% 29.92% 41.92%
Aligned 35.90% 89.42% 90.86% 90.52%
Louisville Correctness Original 7.25% 24.81% 39.85% 58.18%
Aligned 42.21% 96.57% 97.48% 98.04%
Completeness Original 4.70% 12.71% 21.84% 35.90%
Aligned 41.12% 95.05% 95.05% 94.52%

Table 3. The alignment results for water lines compared with the contemporary (original) vector data
(the width of water lines is 5 pixels in all three maps).

Buffer (pixels) 1 3 5 7
Bray Correctness Original 44.05% 56.46% 62.02% 66.28%
Aligned 45.35% 71.69% 84.89% 90.30%
Completeness Original 55.55% 79.55% 88.24% 91.82%
Aligned 46.10% 81.16% 93.31% 89.88%
Louisville Correctness Original 10.62% 23.28% 37.01% 50.31%
Aligned 24.80% 68.77% 84.58% 90.26%
Completeness Original 15.36% 33.53% 53.12% 71.67%
Aligned 24.99% 67.03% 81.79% 87.26%
Boulder Correctness Original 26.86% 42.30% 59.57% 72.47%
Aligned 25.36% 66.04% 81.64% 87.45%
Completeness Original 32.29% 50.85% 71.49% 86.84%

Aligned 26.21% 65.89% 80.77% 86.59%
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Table 4. The alignment results for roads compared with the contemporary (original) vector data (the
width of roads is 15 pixels in the Bray map).

Buffer (pixels) 1 3 5 7 9 1 13 15
Correctness Original 41.11% 49.11% 5832% 67.29% 73.89% 78.23% 80.88% 82.70%

Aligned 530% 14.14% 2359% 3751% 5832% 77.62% 87.57% 91.25%
Completeness  Original 42.08% 51.39% 62.74% 7421% 82.77% 87.95% 91.02% 93.08%

Aligned 534% 1357% 22.46% 36.30% 57.07% 7549% 84.58% 88.00%

(d) (© ®

Figure 14. The sub-maps from (a) to (c) show the alignment for railroads in the Bray map, water lines
in the Louisville map, and roads in the Bray map. The red lines are original vector lines, and the green
lines are aligned vector lines. From (a) to (c), the white arrows point out the locations of geographic
features on the maps. From (d) to (f) show the corresponding enlarged portions for each geographic
feature from (a) to (c) correspondingly.

misalignment caused by the road representation inconsistency by aligning vector data to the
road edge (Figure 14(c)). Our alignment algorithm also handled complex graphical conditions
surrounding the target geographic feature. For example, in Figure 14(a), the railroads overlap
with water lines and the red features on the map, and our algorithm correctly aligned the
railroad vector data to the railroads on the map. Similarly, in Figure 14(b), our algorithm
aligned the water-lines vector data to the water lines on the map, although water lines on the
map overlap with other geographic features.

Table 2 shows that our algorithm aligned most of the railroad vector data to the railroads
on both the Bray and Louisville maps. In the Bray map, 97.32% of the vector data were
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correctly aligned to the railroads within a 5-pixel buffer, the width of railroads. The correct-
ness and completeness of the aligned vector data are about three times higher than for the
original vector data. Although our algorithm does not guarantee to align the vector data to
the center lines of the target feature, our algorithm still got 36.53% correctness when the
buffer size is 1 pixel (i.e. the center lines of railroads), compared to 5.32% alignment of the
original vector data. Figure 15 shows an example of the aligned vector data (green lines) in
comparison to the reference data (red lines) with various buffer sizes in the Bray map. Note
the length of the green lines contained in the buffer (i.e. correctly aligned vector segments)
does not increase much with increasing buffer size from 5 to 7 pixels since the width of the
map feature is approximately 5 pixels. Figure 16(a) shows an example of the vector data in
comparison to the railroad features in the map before and after using our alignment
algorithm in the Bray map. In the Louisville map, 96.57% aligned railroad vector data is
within a 3-pixel buffer, the width of railroads, and 42.21% aligned vector data is at the center
lines. Figure 16(b) shows an example of the vector data in comparison to the railroad
features in the map before and after using our alignment algorithm in the Louisville map.

Figure 15. An example of the aligned railroad vector data (the green lines) compared with the
reference data (the red lines) in various buffer sizes in the Bray map. From left to right, the buffer size is
1,3, 5, and 7 pixels.

(@) (b)

Figure 16. Examples that show the railroad alignment results. The red line is the original railroad vector,
and the green line is the rasterized aligned railroad vector line processed by our algorithm. (a) is the Bray
map, and (b) is the Louisville map. The left bottom in (a) is a zoom-in view of the alignment results.
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Table 3 shows the alignment results for water lines, our algorithm achieved high
performance for all three test maps. In the Bray map, our algorithm aligned 84.89% of the
water-lines vector data within the 5-pixel buffer, the width of water lines in the map. The
correctness of the aligned vector data is about 30% higher than the original vector data.
Figure 17 shows an example of the aligned water-lines vector data (green lines) in compar-
ison to the reference (red lines) with various buffer sizes in the Bray map. In the Louisville
map, the correctness of the aligned water-lines vector data is about two times higher than
the original vector data when the buffer is 5 pixels, the width of water lines. In the Boulder
map, the correctness of the aligned water-lines vector data is 81.64% compared 59.57% for
the original vector data when the buffer is 5-pixel, the width of water lines.

In Table 4, the correctness of aligned road vector data achieved 91.25%, while the
correctness of original vector data is 82.7% when the buffer size is 15 pixels, the width of
roads in the Bray map. However, the completeness of the aligned vector data is slightly
lower than the original vector data when the buffer is 15 pixels because our alignment
algorithm deleted a small portion of the original vector data far away from the roads in the
map. Figure 2(c) shows an example of this kind of road segment. Since our algorithm
assumes that the corresponding features from the two datasets should be close to each
other, if the position offset between them is significant, the algorithm considers them as
different features. As for aligning to the center lines, we can see from Table 4 that the
correctness and completeness of the aligned vector data are only 5.30% and 5.34%,
respectively, when the buffer size is 1 pixel, while they are 41.11% and 42.08%, respectively,
for the original vector data. This is because the road line symbol is not a homogenous color
area. For example, the center of the road lines contains both black pixels and background
pixels (filled and non-filled) shown in Figure 11(e-g), so our algorithm would align the
vector data to the road edges, which have a consistent road representation.

5.4. Limitations and considerations

This section discusses the current limitations and practical considerations of the proposed
algorithm.

5.4.1. Spatial relationship (parallel and intersection)

Our algorithm could take spatial and topological relationships (e.g. parallel railroads in
Figure 18(a)) into account during the alignment process to improve the performance. For
example, our algorithm aligned the parallel vector lines to the same railroad on the Bray
map. Some of the railroad tracks in the Louisville map are also represented by parallel

Y BN Yy

Figure 17. The example of the aligned water-lines vector data (the green lines) compared with the
reference (the red lines) in various buffer sizes in the Bray map. From left to right, the buffer size is 1, 3,
5, and 7 pixels.
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(b)

Figure 18. Examples that show the alignment results on parallel railroads. The red line is the
contemporary railroad vector, and the green line is the aligned railroad vector processed by our
algorithm. (a) and (b) is an example for the Bray and Louisville map respectively.

lines, but only one track exists in the vector data (Figure 18(b)). Our algorithm aligned the
single railroad vector line to the parallel railroad lines because the vector polyline consists
of several segments, and our algorithm did not process the segments at the same time.

Processing each line segment one by one also could result in losing geometric and
topological information of intersections. Figure 19 shows examples of road intersections.
In Figure 19(a), two intersecting road vector lines moved in two opposite directions to
align to the edges of roads to have the maximum rewards resulting in the loss of the

dv

(a) (b)
Figure 19. (a) is an example of the loss of road intersections, and (b) is an example of the distortion of

intersections. The red lines are the original vector data. The green lines are the vector data processed
by our algorithm.
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intersection. Figure 19(b) shows an example in which individual alignment can distort the
road angle. Our algorithm aligned each vector line to the edges of the roads on the map
to get the maximum reward but did not consider them as a group. A possible solution is
to consider the spatial or topological relationships of geographic features (vector data) in
the reward function to maintain them during the process.

5.4.2. Symbol representation

Our algorithm could not perform well when the map symbol does not have a consistent
color. For example, water lines and roads are represented by dashed lines on maps in
Figure 11(c-f), respectively. Another example is the road represented by the filled and non-
filled symbols or hollow symbols in Figure 11(e,g), respectively. For the dashed lines, the
vector line could not receive the maximum reward because some segments would always
align with the background. Figure 20 shows some examples of the alignment performance
for dashed water lines. Because water lines are represented as solid blue lines in the Bray
map but dashed and dotted lines in the Louisville and Boulder maps, the correctness and
completeness of water-line alignment in the Louisville and Boulder map are slightly lower
than that in the Bray map. In the case of road features, Figure 21 shows that the road vector
data often align to the edge of roads in the maps instead of the center.

\/ 9£9/( sy

N IRarr~

Figure 20. Examples that show water-lines vector data aligning to the dashed and dotted water lines
in the maps. The red lines are the original water-lines vector data and the green lines are the aligned
vector data. (a) is an example for the Louisville map, and (b), (c) are for the Boulder map.

’// \\\\\-\ 3
// ‘ |

Figure 21. Road alignment results in the Bray map with various road symbol representations. The red
line is the original road vector, and the green line is the aligned road vector processed by our algorithm.
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5.4.3. Geometric representation

The geometric representation of the same geographic feature may not be similar in the
vector data and map. For example, the water lines are represented as curves in the map
while they are straight lines in the vector data in some locations (Figure 22). Our algorithm
densified the water-line vector data by interpolating points every 15 pixels to solve this
problem. However, the densification can accommodate the wide curves well but not the
tight ones with sudden changes (Figure 23). Adding more vector points during the
densification process would improve the alignment process for such tight curves.

Figure 22. An example of different feature representations for the water lines in contemporary vector
data and the Bray map. Water lines are represented as straight line segments in the vector data (the
red lines), while curves in the map.

o

(@

Figure 23. An example shows how our algorithm can align the original vector data (the red lines) to
the water lines (the blue lines) with wide curves (a) but not the tight curves (b) on the map. The green
lines are the (rasterized) aligned vector data.
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5.4.4. Large positional offsets

Our algorithm uses the position offset as a hint to verify if the content on the map
and the auxiliary vector data represent the same feature. If a nearby geographic
feature can be found in the map in at least one of cardinal or inter-cardinal direc-
tions, this feature is considered the corresponding one. Otherwise, the algorithm
removes the vector features from the process. Having a large positional offset often
means that the geographic features from the two data sources are significantly
different (e.g. the changes of road networks from maps circa 1895 and 2018),
which would be a challenge for any alignment algorithm.

5.4.5. Reward function

When overlapping non-target features have a similar color, these non-target features can
be falsely identified as the target feature, and hence our reward function would give
positive rewards to mis-aligned segments. Figure 24 shows an example where the con-
tour line connects to the railroads in one area of the Bray map. The green line represents
the vector data aligned by our algorithm. In this example, first, our algorithm moves the
vector points to the contour lines due to the similar color range of the railroads and
contour lines. Next, because of the similar color range and the fact that the railroads and
contour lines are connected, the reward function gives positive rewards to these incorrect
movements. This limitation could be solved by improving the process of identifying the
color range of the target feature so that our algorithm can better separate the target
feature from other features. Also, the reward function could take into account expected
geometric properties due to the semantics of the target features (e.g. railroads should not
have a sharp turn) and penalize unlikely feature geometry in the alignment results.

Figure 24. An example of the mis-aligned railroads where the green line is the output vector data
from our algorithm.
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6. Conclusion and future work

In this paper, we presented a vector-to-raster alignment algorithm based on the
reinforcement learning framework, which makes the alignment process efficient for
various types of geographic features without human intervention. In the experiment
section, we showed that our alignment algorithm achieved accurate results in most
cases. Automatically aligning the vector data to the geographic feature of interest in the
scanned historical maps can help to automatically generate a large number of repre-
sentative samples of a map symbol necessary for training stages in machine learning
frameworks for information extraction (e.g. Convolutional Neural Networks) to recog-
nize geographic features in digital maps. Recognizing the geographic features in
historical maps can convert valuable information locked in those maps into machine-
readable datasets.

Future work will focus on further improvement of our algorithm in two aspects. First,
we plan to improve the reward function to handle a variety of symbols (dashed and
double lines), maintain the spatial and topological relationships between and within
geographic layers in vector format, and avoid the misalignment that violates semantic
properties of geographic features. Second, we plan to build the technology to accom-
modate varying feature representations (e.g. from map generalization) to apply the
algorithm to maps of different scales.

Notes

1. https://cs.stanford.edu/~roozbeh/pascal-context/.

2. This method is based on our previous work published in the first GeoAl Workshop (Duan et al.
2017a).

3. However, the poor quality of the original scanned maps may violate the assumption that
the color for the geographic feature is consistent and distinguishable and may have
a negative impact on the accuracy of our algorithm. For example, when the original maps
are prone to color bleaching (Leyk and Boesch 2010, Chiang et al. 2014), the color cannot be
used as a distinct property for the geographic feature. As a consequence, our reward
function, which is designed based on the color property, cannot provide accurate rewards
to actions. The color property should be valid and consistent for most of the scanned maps
edited in recent decades.

4. The manually aligned vector data are reviewed by researchers who are not on the author list
of this paper but are affiliated with the same research institute.
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