

Integrating Text Recognition for Overlapping Text Detection in
Maps
Narges Honarvar Nazari*, Tianxiang Tan*, Yao-Yi Chiang**

*Department of Computer Science, University of Southern California, Los Angeles, CA, USA
**Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA

ABSTRACT
Detecting overlapping text from map images is a challenging

problem. Previous algorithms generally assume specific
cartographic styles (e.g., road shapes and text format) and are
difficult to adjust for handling different map types. In this paper, we
build on our previous text recognition work, Strabo, to develop an
algorithm for detecting overlapping characters from non-text
symbols. We call this algorithm Overlapping Text Detection (OTD).
OTD uses the recognition results and locations of detected text
labels (from Strabo) to detect potential areas that contain
overlapping text. Next, OTD classifies these areas as either text or
non-text regions based on their shape descriptions (including the
ratio of number of foreground pixels to area size, number of
connected components, and number of holes). The average
precision and recall of OTD in classifying text and non-text regions
were 77% and 86%, respectively. We show that OTD improved the
precision and recall of text detection in Strabo by 19% and 41%,
respectively, and produced higher accuracy compared to a state-of-
the-art text/graphic separation algorithm.

Keywords
Digital Map Processing, Spatial Databases, Optical Character

Recognition, Geographic Information System

1. INTRODUCTION
Detecting overlapping text from map images is a challenging

problem, and a great deal of algorithms has been proposed to extract
the overlapping text from map images [5]. Although the previous
methods can detect overlapping characters, their algorithms assume
specific cartographic styles and cannot be easily generalized for
handling various types of maps. In [7] and [9], the authors proposed
algorithms to extract text from United States Geological Survey
(USGS) maps. They exploit the cartographic style of USGS maps
(e.g., text can only overlap with road lines) to remove the non-text
symbols and group the remaining symbols as text labels. In [2],
authors assume that the constituent strokes of characters are usually
shorter segments in comparison with those of graphics. Yet, for
maps that have many overlapping non-text symbols (e.g., linear
objects), there are often non-text constituent strokes that have a
similar size as the text constituent strokes. In addition, the length
threshold that defines a short segment needs to be re-adjusted if a
different scan resolution is used.

In our previous work [3], we developed an open source text
recognition system, Strabo, to detect and recognize text labels in
map images. Strabo does not handle overlapping characters well.
Figure 1 shows two detected text labels that miss at least two
characters due to the overlapping of text and non-text regions.

In this paper, we present an algorithm, denoted as Overlapping
Text Detection (OTD). The main contribution of OTD is an
approach that exploits the differences in shapes between

alphabetical characters and non-text symbols to detect overlapping
text. OTD receives the detected text labels from Strabo as input and
searches the neighboring areas of the detected text labels to find and
recover overlapping characters. Although in this paper we
demonstrate OTD using Strabo, OTD assumes a generic input (the
detected text locations and recognized characters) and can work
with other text detection and recognition algorithms.

To detect the overlapping text areas, OTD works as follows.
First, OTD creates the minimum enclosing box for each detected
text label to represent each text label with its orientation. Second,
OTD detects the potential overlapping text areas based on the
locations and the recognition results of detected text labels. Third,
OTD extracts the shape features of potential text areas and classifies
the areas as text or non-text.

The remainder of this paper is organized as follows. Section 2
presents the overall approach for identifying the overlapping text
regions. Section 3 describes the experimental results. Section 4
discusses the related work, and Section 5 concludes the paper by a
discussion of the overall findings and future research directions.

Figure 1. The rectangles show the bounding boxes of detected text labels. In
the top and down images some characters have not been detected due to the
overlap of text labels and non-text symbols.

2. Overall Approach for Identifying
Overlapping Text Regions

In this section we present the technical details of OTD (Figure
2). We first provide a brief background on our previous text
detection and recognition work (section 2.1). Then we describe how
OTD detects overlapping text automatically (sections 2.2-2.4).

2.1. Background: Strabo
In our previous work [3], we developed a general approach to

detect and recognize text labels in map images. Strabo first extracts
text pixels from a map using text colors. Once the text pixels are
extracted, the text detector of Strabo expands pixel areas when
certain conditions are satisfied to group nearby pixels into characters
and then nearby characters into strings. The conditions are based on
cartographic labeling principles including the rules that characters
in one map label are similar in size and are closer than the characters
in two separate labels. Because map labels can be in various
orientations, Strabo detects the label orientations automatically and
rotates every label to the horizontal direction. Finally, Strabo uses
an Optical Character Recognition (OCR) package (e.g., Tesseract-
OCR) to convert the horizontal text labels to machine-readable data.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-061.1

Strabo sends the bounding boxes, character recognition results, and
orientations of the detected text labels to OTD.

Figure 2. The Workflow of OTD.

2.2. Compute the Minimum Enclosing Box for
Detected Text Labels

To explore the neighborhood of the detected text labels for
recovering overlapping characters, OTD needs to have a bounding
box that represent each detected text label with its orientation and
location. OTD calculates the minimum enclosing box (MEB) to
represent the detected text labels and their orientations. A MEB for
an object is the smallest bounding box within which all points of
object lie. The orientation of a MEB represents the orientation of the
detected text label. The left image in Figure 3 shows the MEB of the
label “School”. Since “School” is horizontal, its MEB is a horizontal
rectangle. The right image in Figure 3 shows MEB of the label
“STREE”. Since “STREE” is non-horizontal, its corresponding
MEB is a rotated (from the horizontal direction) rectangle.

Figure 3. Detected text labels (from Strabo) “School” and “STREE” and their
corresponding minimum enclosing boxes (from OTD).

2.3 Detect the Potential Character Areas
In this section we explain how OTD detects the potential text

areas in the neighborhood of the detected text labels. The dashed
areas in Figure 4 are potential text areas for the labels “Allot”. The
potential text areas may contain one or more overlapping characters.
Since OTD does not make a prior assumption about the number of
overlapping characters, it iteratively explores whether or not there is
a character in the potential text areas.

In every iteration OTD creates a rectangle that has the same
dimension (e.g., width, height, and orientation) as the minimum
enclosing box of one character. We call this rectangle as the
potential character area (i.e., one potential text area could contain
one or more potential character areas). In Figure 5 the blue rectangle
is the minimum enclosing box of the label “ALL”, the red rectangle
is the minimum enclosing box of character “A”, and the purple

rectangles are the first potential character areas on either side of
“ALL”.

OTD classifies the potential character areas as text or non-text
based on their shape features. If OTD classifies the potential
character area as text, it continues to explore the rest of areas. This
classification process has two stopping criteria: (1) OTD stops if a
potential character area has too few foreground pixels, or (2) if two
successive potential character areas are classified as non-text (the
classification process is discussed in section 2.4). The reason for the
second stopping criterion is that the probability of finding a
character after two successive non-text areas is low. For instance,
assuming OTD classifies the potential character area correctly with
a success rate of 70%, the probability that OTD classifies two
successive potential character areas incorrectly is then 9% (30% *
30%).

Figure 4. Blue bounding boxes in both images are minimum enclosing boxes
of labels “Allot”. The dashed areas are potential text areas.

Figure 5. The blue rectangle is minimum enclosing box of label “All”, the red
rectangle is minimum enclosing box of character “A”, and the purple
rectangles are potential character areas.

In the following paragraphs, we explain how OTD computes
the orientation, width, and height of a potential character area. The
orientation of potential character area is the same as the orientation
of the minimum enclosing box of a detected text label. The width
and height of a potential character area depend on the recognized
characters (of the detected label) and whether the potential character
area is a prefix or postfix to the detected label.

For each detected text label, OTD first computes its width and
the number of characters inside it from the text recognition results
(of Strabo). By dividing the bounding box width by the total number
of recognized characters, OTD computes the average character
width for that detected text label. Because uppercase and lowercase
characters can have significantly different character width, the
average character width cannot be used directly for generating the
potential character areas.

To compute the width of a potential character area, OTD
considers three scenarios for detected text labels (Figure 6). In
Figure 6 and 7 the purple rectangles show bounding boxes of the
detected text labels, and the blue rectangles show the potential
character areas. In Figure 6 “Width” is the width of detected text
label, “N” is number of characters of the detected text label,
“Width/N” is the average character width of detected text label, and
ULWR is the ratio of uppercase character width to lowercase
character width (Uppercase-to-Lowercase-Width-Ratio).

The three scenarios for computing the width of detected text
labels are as follows. The first scenario represents the detected text
labels that have their first recognized character in uppercase and the
rest of characters in lowercase (the top image in Figure 6). In this

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-061.2

case since the first uppercase character of text label has been
detected, OTD does not explore the left potential character areas.
The width of the right potential character area (for finding lowercase
characters) is the same as the average character width, which is
Width divided by N. Here we assume that the number of lowercase
characters in the detected label is larger than uppercase characters
and hence the average character width is similar to the width of a
lowercase character.

The second scenario represents the detected text labels that
have first character in lowercase (the middle image in Figure 6). In
this case OTD expects to detect an uppercase character in one of the
potential character areas to the left of the detected label. Since in
general the average width of uppercase characters is greater than the
average width of lowercase characters, the width of the left potential
character area is ULWR times greater than the average character
width. The width of right potential character area is the same as
average character width (Width divided by N).

The third scenario represents the detected text labels that have
all characters in uppercase (the bottom image in Figure 6). In this
case, if there are overlapping characters in the left or right potential
character areas, they must be in uppercase. The width of the left and
the right potential character areas are the same as the average
character width (Width divided by N).

Figure 6. Three scenarios for computing width of potential text areas.

To compute the height of the potential character areas, OTD
also considers three scenarios of the recognized text (Figure 7). In
English scripts, some characters have larger heights than the other
characters. Typically, all uppercase characters have an equal height.
Characters “b”, “d”, “f”, “h”, “k”, “l”, and “t” have the same height
as the uppercase characters, and they are right on top of the writing
line. Characters “g”, “j”, “p”, and “q” have the same height as the
uppercase characters but more than half of their shape is under the
writing line. The rest of the English characters have smaller heights
and they are located on top of the writing line. We consider all
uppercase characters and “b”, “d”, “f”, “h”, “k”, “l”, “t” as the first
group, characters “g”, “j”, “p”, and “q” as the second group, and the
rest as the third group.

Figure 7 shows the three scenarios for computing the height of
detected text labels where “Height” is the height of detected text
label, “FTHR” is First-to-Third-Group-Height-Ratio, and FSHR is
First-to-Second-Group-Height-Ratio (explained in the following
paragraphs). The first scenario represents the text labels that have

all characters from the third group (the top image in Figure 7). In
this case, the height of the potential character area is FTHR times
the height of the minimum enclosing box of the detected label. The
second category consists of text labels with characters from the
second and third groups (the middle image in Figure 7). In this case,
the height of the potential character area is FSHR times the height
of the minimum enclosing box of the detected label. The third
category consists of the text labels that have at least one character
from the first group (the bottom image in Figure 7). In this case, the
height of the potential text areas is the same as the height of the
minimum enclosing box of the detected labels.

As explained in the previous paragraphs, we use the ULWR,
FTHR, and FSHR ratios to compute the height and the width of
potential character areas. ULWR is the ratio of the average widths
of uppercase characters to the average widths of the lowercase
characters. FTHR is the ratio of the average heights of characters in
the first group to the average heights of the characters in the third
group. FSHR is ratio of the average heights of characters in the first
group to the average heights of characters in the second group. The
measure of these three aforementioned ratios depend on the font
type and do not change with the scanning resolution. To estimate the
three aforementioned ratios, we use the Arial font which has
common shape features of the font types in our test maps (section 3).
We empirically compute the measures of ULWR, FTHR, and FSHR
for Arial font, which are 1.3, 1.5, and 1.36, respectively.

Figure 7. Three scenarios for computing height of potential text areas.

2.4 Extract Shape Features
After computing the size and location of potential character

areas for every detected text label, OTD scans the foreground pixels
of these detected areas (the foreground pixels can contain text and/or
non-text objects). OTD uses four shape features to classify the
potential character areas as text or non-text label. These features are:
(1) the ratio of the number of foreground pixels to the size of a
potential character area, (2) the number of connected components,
(3) the number of holes, and (4) the presence of linear objects in a
potential character area.

The first feature uses the ratio of number of foreground pixels
to the size of potential character area. In the minimum enclosing box
of a character, the proportion of the foreground pixels to the size of
the bounding box cannot be less than a specific threshold (Figure 8).
We empirically define the pixel-to-size-ratio threshold as 0.2.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-061.3

Figure 8. English lowercase and uppercase characters and their
corresponding bounding boxes.

The second feature is based on the number of connected
components. Except “i” and “j”, the rest of the English characters
has only one connected component. Although the number of
connected components of English characters is at most two, the
potential character areas do not always completely encompass every
pixel of a character and can contain pixels from other symbols (e.g.,
an overlapping road). The left image in Figure 9 shows the text label
“Grisz”. Since characters “G”, “r”, “s”, and “z” overlap with lines,
the only detected character is “i”. Since “i” has a smaller width than
the other characters of text label “Grisz”, OTD cannot create
potential character areas with the exact width as the overlapping
characters. In the result (the right image of Figure 9), the majority
of the potential character areas have more than one connected
component. Since such cases could appear, OTD considers the
potential character areas that contain more than five connected
components as non-character areas.

Figure 9. The left image shows potential character areas for the detected text
label “Grisz”. In the right image, each color shows a connected component in
each potential character area.

The third feature limits the number of holes in a character. The
majority of English characters do not have any hole in their
structure. The rest of the characters have either one hole or two
holes. Although the maximum number of holes in a character is
two, the potential character areas could contain partial characters
(e.g., Figure 9). OTD considers the potential character areas that
contain more than five holes as non-character areas.

Maps usually contain many linear objects such as roads and
boundaries. These linear objects can overlap with characters. The
forth feature helps OTD to find the potential character areas that
contain only non-overlapping linear objects. To detect non-
overlapping linear objects, OTD explores the intersections of the
connected components in a potential character area and the area
edges. If a potential character area contains a connected component
that intersects two parallel edges of the area, the connected
component can be a linear object. Figure 10 and 11 show four
potential character areas that contain a connected component
intersecting two parallel edges.

Depending on the intersecting edges, in Figure 10 OTD
considers the height of the area as the length of the connected
component while in Figure 11 uses the width. In both cases, OTD
divides the number of foreground pixels of the connected
component by the length to calculate the thickness of the
component. A linear object has a smaller average thickness than an
overlapping linear object (with a character). Therefore, if the

average thickness is smaller than a threshold OTD classifies the
connected component as a linear object.

Figure 10. The left image shows a character overlapping with a linear object
and the right image shows a linear object.

Figure 11. The left image shows a character overlapping with a linear object
and the right image shows a linear object.

3. Experiments
We tested the performance of OTD on 1920 6-inch Historical

Ordnance Survey maps of the United Kingdom (UK). We tested on
10 tiles within these scanned maps, each covering 1,000 x 1,000
square meters in the TQ grid (near London) of the British National
Grid (equal to 1,512 x 1,512 pixels).

We performed two experiments to evaluate the OTD algorithm.
First, we evaluated OTD in detecting and classifying overlapping
character areas. Next, we evaluated the overall performance of text
detection in Strabo before using OTD, Strabo after using OTD, and
compared the result with a baseline approach from Cao et al.’s
algorithm [2].

For the first experiment, OTD received the bounding boxes,
character recognition results, and orientations of the detected text
labels from Strabo. OTD explored the potential character areas of
text labels to detect and classify overlapping characters. For each
detected text label from Strabo, we manually identified the missing
characters as the ground truth (i.e., the text areas near the detected
text labels that were not detected by Strabo).

Table 1 shows the precision and recall of the first experiment.
The last column is the number of ground truth. The average
precision of OTD for detecting the overlapping characters in 10 map
images was 77% and the average recall was 86%. The image with
the lowest recall was image 4. The reason that image 4 had low
recall was that it had only two false negative and two true positive.
In other words, there were not enough ground truth in image 4.
Figures 12-15 show example results of OTD.

Figure 12. In the left image, OTD recovered two overlapping characters (“No”)
of the detected text label “rthend” from the potential character area to the left
of label. In the right image, OTD recovered two overlapping characters (“ts”) of
the detected text label “Smyat” from the potential character area to the right of
label.

Figure 13. In the left image, the label “S” was detected by Strabo. By exploring
the potential character areas to the right, OTD detected the overlapping
character “P”. In the right image, the label “B” was detected by Strabo, and
OTD recovered the overlapping character “M” by exploring the potential
character areas to the right of label.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-061.4

Figure 14. Top image: OTD detected four missing characters (“hool”) of the
detected text label “Sc” (from Strabo). Bottom image: OTD detected two
missing characters (“W” and “e”) of the detected text label “est Hous”.

Figure 15. In the left and right images, OTD recovered the overlapping
characters for the non-horizontal labels “Aven” and “uria” detected by Strabo.
In the left image, OTD recovered two characters “ue”. In the right image, OTD
recovered the uppercase character “B” to the left and characters “l Gd” to the
right.

Table 1. Precision and Recall of OTD in 10 test map images.

 Precision Recall Number of
Ground Truth

Image 1 86% 100% 18
Image 2 73% 95% 31
Image 3 78% 92% 64
Image 4 100% 50% 4
Image 5 72% 86% 108
Image 6 62% 89% 15
Image 7 88% 80% 53
Image 8 74% 78% 16
Image 9 81% 81% 65
Image 10 77% 80% 31
Average 77% 86% 405

The errors in OTD were from three main categories. First, OTD

could not correctly classify the text labels that were located in the
neighborhood of many non-text symbols (Figure 16). In this case
either the number of connected components or number of holes in
the potential character area were more than the thresholds. Second,
OTD could not correctly classify non-text symbols that had similar
shape features as characters (Figure 17). In this case, the number of
connected components and number of holes in the potential
character area are usually less than specified thresholds. To solve
the two aforementioned issues in our future work, we could explore
whether or not each of connected components or holes in the
potential character area could be a part of a character based on their
shape features. Third, incorrect results from Strabo lowered the
accuracy of OTD (Figure 18 and 19). If Strabo computed incorrect
orientations or recognition results for the detected text labels, OTD
could not find the accurate potential character areas.

Figure 16. OTD explored the potential character areas of the detected label
“MA”. OTD classified the overlapping characters “L” and “O” as text. Since
characters “D” and “N” overlapped with many non-text symbols, the number of
holes was more than the specified threshold and OTD misclassified “D” and
“N” as non-text.

Figure 17. In the left image, OTD explored the potential character areas of the
detected label “urch”. OTD explored the left potential character areas of
detected label and classified them as text (“Ch”). The right potential character
areas are non-text labels with similar shape features as text. OTD
misclassified the right potential areas as text. In the right image, OTD explored
the right potential areas of the detected label “Hous”. OTD classified the
overlapping character “e” as text and also misclassified its neighboring non-
text symbol as text.

Figure 18. The left image shows the detected labels “Cha”. Since Strabo
recognized the label as “Cfza” and OTD used the number of recognized
characters for computing the average character width, OTD could not detect
the exact potential character areas. The right image shows detected label
“rewe”. Since Strabo recognized the first character of the detected labels as
uppercase (“R”), OTD did not explore the left potential character areas and the
uppercase character “B” could not be retrieved.

Figure 19. Due to the incorrect orientations detected by Strabo, OTD could not
detect the correct potential text areas of detected labels.

For the second experiment, we evaluated the performance of
detecting individual text labels using the Cao et al.’s algorithm [2],
using Strabo without OTD, and using Strabo with OTD. Table 2 and
3 show the precision, recall, and F-measure of experiment results.
As shown in table 2 and 3, OTD improved the precision, recall, and
F-measure of text detection in Strabo by 19%, 41%, and 29%,
respectively. OTD produced more accurate results compared to Cao
et al.’s algorithm and improved the precision, recall, and F-measure
by 538%, 83%, and 231%, respectively. The ground truth in this
experiment was every text label in the test map. Since the output of
all tested algorithms were bounding boxes that contain text labels, a
true positive for this experiment was a bounding box with the
following features: (1) a bounding box that were completely
encompassed the minimum enclosing box of a text label, (2) a
bounding box with a width less than 1.5 times the width of the
minimum enclosing box of detected text label, and (3) a bounding
box with a height less than 1.5 times the height of the minimum
enclosing box of detected text label. In Figure 20, the blue rectangles
are the minimum enclosing boxes of the ground truth “Allot” and
the orange rectangles are bounding boxes of detected text labels.
Since the width and height of detected text label are less than 1.5 x
the width of text label or 1.5 x the height of text label, we considered
the detected text label as a true positive. This orange rectangle
served as a buffer for which OCR software could still treat the
detected label as a single line text.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-061.5

Figure 20. The blue rectangles show the minimum enclosing boxes of the text
label “Allot”, and orange rectangles show the bounding box of the detected
text label.

Table 2. Precision and recall of text detection for Cao et al.’s
algorithm, Strabo without OTD, and Strabo with OTD in 10 test
maps. “P” in table is precision, “R” is recall, “GT” is the
number of Ground Truth, and Avg is Average.

 Cao et al. Strabo OTD
GT P R P R P R

1 20% 61% 77% 63% 97% 84% 38
2 10% 27% 50% 52% 66% 61% 83
3 13% 26% 53% 38% 73% 60% 72
4 2% 31% 42% 43% 39% 49% 35
5 13% 27% 34% 29% 54% 58% 91
6 7% 37% 42% 37% 48% 39% 38
7 15% 32% 75% 38% 69% 52% 71
8 5% 38% 67% 54% 58% 69% 26
9 5% 21% 30% 22% 42% 40% 73
10 13% 29% 26% 39% 25% 46% 93
Av
g 8% 30% 43% 39% 51% 55%

620

The Cao et al.’s algorithm received three parameters as input.

We tested the Cao et al.’s algorithm on 10 different sets of
parameters to have the best results for each test map. OTD
outperformed the precision and recall of Cao et al.’s algorithm.
Figures 21 and 22 show the results of the three aforementioned
experimental settings. The top images of Figures 21 and 22 (results
of Strabo using OTD) show the bounding boxes of the detected text
labels (from Strabo) and potential character areas. As shows in the
top image of Figure 21, OTD explored the potential character areas
of text labels on either side of a detected label. If OTD classified the
detected potential character area as non-text, it stopped to explore
the rest of potential areas (e.g., the text label “PO” in top image of
Figure 21). If OTD classified a detected potential character area as
text, it continued to explore the rest of potential areas (e.g., the right
side of text label “Sc” in top image of Figure 21). The middle and
bottom images of Figure 21 and 22 show the results of Strabo
without using OTD and Cao et al.’s algorithm, respectively. In Cao
et al.’s algorithm, due to the assumption that non-text constituent
strokes have similar size as text constituent strokes, many non-text
symbols were detected as text. Cao et al.’s algorithm connected
some of text labels and non-text symbols (which have been detected
as text) and hence their results contain large bounding boxes which
are as big as half of map size.

Table 3. F-Measure of text detection results for Cao et al.’s
algorithm, Strabo before using OTD, and Strabo after using
OTD.

 Cao et al.
F-measure

Strabo
F-measure

OTD
F-Measure

Image 1 30% 70% 90%
Image 2 14% 51% 64%
Image 3 17% 44% 66%
Image 4 4% 42% 43%
Image 5 18% 31% 56%
Image 6 11% 39% 43%
Image 7 21% 50% 59%
Image 8 9% 60% 63%
Image 9 8% 25% 41%
Image 10 18% 31% 33%
Average 16% 41% 53%

Figure 21. The top image is the result of text detection from Strabo after using
OTD. The rectangles show the minimum enclosing boxes of the detected text
labels and the potential character areas. The middle image shows the results
of Strabo before using OTD. The rectangles show the detected text labels.
The bottom image shows the results from Cao et al.’s algorithm. The
rectangles show the results of text detection.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-061.6

4. Related Work
There exists abundant work in the area of text detection and

recognition, specifically for processing map documents. Yet,
recognizing map labels in scanned maps in general is still not a
solved problem [4, 8]. This is because most of the previous work
assume specific cartographic styles (e.g. road shapes and text
format), which make their algorithms difficult to adjust for handling
various map types and scan resolutions.

Fletcher et al. [6] present an algorithm to extract strings in
various orientations and font styles from mixed text/graphics
images. Their algorithm uses the Hough transformation, widths,
heights, and distances between individual connected components to
group characters for extracting text labels. Their method can only
extract non-overlapping characters.

Cao et al. [2] present an algorithm to detect overlapping text in
document images. Their algorithm first removes dashed lines,
applies a thinning operator, and then searches for line intersections
to identify line segments. To recover the overlapping text, their
algorithm assumes that lines of characters are shorter than lines of
graphics. Therefore, the thinned foreground objects are decomposed
into line segments and shorter lines are grouped into characters. This
assumption only holds for specific map types and the length
threshold varies significantly for the same map with different scan
resolution.

Tombre et al. [10] extend the work of Fletcher et al. [6] to
handle overlapping characters in graphic-rich documents. Their
algorithm for identifying overlapping characters is similar to Cao et
al. [2]. Their algorithm assumes that the overlapping characters
intersect non-text objects at only one location (i.e., points that text
and graphic meet). In maps, especially historical maps, characters

Figure 22. Example text detection results. The top images are the result of text detection from Strabo after using OTD. The middle images show the
results of Strabo before using OTD. The bottom images show the results from Cao et al.’s algorithm.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-061.7

very often overlap with non-text objects significantly and the
aforementioned assumption does not work.

Li et al. [7] present an algorithm to extract street labels from
the USGS topographic maps. The street labels in USGS maps very
often only overlap with street lines. Their algorithm first detects
non-overlapping characters, searches for nearby parallel lines
(streets), and then follows the line direction to detect overlapping
characters. Their algorithm cannot extract overlapping characters
that intersect with other non-text symbols (e.g., buildings, trees).

Pezeshk et al. [9] present an algorithm to remove linear objects
and some specific types of graphic objects (e.g., solid objects and
dashed lines) in maps to extract text from images. Similar to Li et
al. [7], their algorithm assumes a specific cartographic style and can
only apply to maps that are similar to the USGS topographic maps
(i.e., with a similar road symbology and label placement).

All of these algorithms [2, 6, 7, 9, and 10] assume that the
characters only touch straight roads or linear objects, they do not
consider the case that the characters overlapping curved lines or
symbols (e.g., trees and buildings). In contrast, our approach utilizes
shape features based on font types and are independent from the
(scan) resolution and other cartographic styles.

Velazquez et al. [11] compute imaginary lines following the
orientation of non-overlapping characters to create a rectangle for
detecting overlapping characters along the same orientation.
However, this algorithm can only detect overlapping characters
between non-overlapping characters.

In addition, there is a great deal of work for recognizing text in
photos of natural scenes [12], and a number of them reports high
recognition accuracy, such as the Google PhotoOCR using deep
learning and large language models [1]. This type of text recognition
work generally assumes that text regions have a significant
difference in response to a certain image filter (e.g., edge detectors
and corner detectors) to first localize text regions in natural scenes.
This assumption does not apply to document images (e.g., maps)
where graphical features in documents can have similar response to
these image filters as text.

5. Discussions and Future Work
The contribution of this paper is an approach that exploits the

differences in shapes between characters and non-text symbols to
detect overlapping text. OTD receives the detected text labels from
a text detector/recognizer, creates the minimum enclosing boxes for
text labels, detects the potential character areas, and classifies the
areas as text or non-text based on their shape features. We showed
that OTD outperformed two existing approaches (Strabo and Cao et
al.’s algorithm) in text detection. In this paper we use empirical
thresholds to classify potential character areas to text and non-text.
We plan to test a broader range of map types and use machine
learning approaches like the artificial neural networks to
automatically classify potential text areas.

REFERENCES
[1] A. Bissacco, M. Cummins, Y. Netzer and H. Neven, "PhotoOCR:

Reading Text in Uncontrolled Conditions," in International
Conference on Computer Vision, 2013.

[2] R. Cao and C. L. Tan, "Text/Graphics Separation in Maps," in
Graphics Recognition Algorithms and Applications, 4th International
Workshop, 2001.

[3] Y.-Y. Chiang and C. A. Knoblock, "A general approach for extracting
road vector data from raster map," International Journal on
Document Analysis and Recognition, vol. 16, no. 1, pp. 55-81, 2013.

[4] Y.-Y. Chiang and C. A. Knoblock, "Recognition of Multi-Oriented,
Multi-Sized, and Curved Text," in International Conference on
Document Analysis and Recognition, pp. 3199–3202, 2011.

[5] Y.-Y. Chiang, S. Leyk and C. A. Knoblock, "A Survey of Digital
Map Processing Techniques," ACM Computing Surveys, vol. 47, no.
1, pp. 1-44, 2014.

[6] L. A. Fletcher and R. Kasturi, "A robust algorithm for text string
separation from mixed text/graphics images," Pattern Analysis and
Machine Intelligence, vol. 10, no. 6, pp. 910-918, 1988.

[7] L. Li, G. Nagy, A. Samal, S. Seth and Y. Xu, "Integrated text and
line-art extraction from a topographic map," International Journal on
Document Analysis and Recognition, vol. 2, no. 4, pp. 177-185, 2000.

[8] G. Nagy, A. Samal, S. Seth, T. Fisher, E. Guthmann, K. Kalafala, L.
Li, S. Sivasubramaniam and Y. Xu, "Reading Street Names from
Maps - Technical Challenges," in The GIS/LIS Conference, 1997.

[9] A. Pezeshk and R. Tutwiler, "Automatic Feature Extraction and Text
Recognition From Scanned Topographic Maps," IEEE Transactions
on Geoscience and Remote Sensing, vol. 49, no. 12, pp. 5047-5063,
2011.

[10] K. Tombre, S. Tabbone, L. Pélissier, B. Lamiroy and P. Dosch,
"Text/Graphics Separation Revisited," in DAS '02 Proceedings of the
5th International Workshop on Document Analysis Systems V, 2002.

[11] A. Velázquez and S. Levachkine, "Text/Graphics Separation and
Recognition in Raster-Scanned Color Cartographic Maps," in
Graphics Recognition, Recent Advances and Perspectives, 5th
InternationalWorkshop, 2003.

[12] Q. Ye and D. Doermann, "Text Detection and Recognition in
Imagery: A Survey," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 37, no. 7, pp. 1480-1500, 2014.

 Author Biography
Narges Honarvar Nazari is a master student in Computer Science at the
University of Southern California. She received her Bachelor degree in
Computer Software Engineering from Shahid Beheshti University. Her
research focuses on image processing, document analysis, computer vision,
and geospatial information sciences.

Tianxiang Tan received his Bachelor degree in Software Engineering at Sun
Yat-sen University in 2014. He is currently working toward his master
degree in Computer Science at the University of Southern California. His
research interests include image processing, machine learning and
computer vision.

Yao-Yi Chiang is an Assistant Professor (Research) at the University of
Southern California (USC), Spatial Sciences institute. He received his
Ph.D. degree in Computer Science from USC in 2010; his Bachelor degree
in Information Management from National Taiwan University in 2000. His
general area of research is information integration, with a focus on
acquiring, modeling, fusion, and visualization of geographic data from
heterogeneous sources. In particular, Dr. Chiang is an expert in digital
map processing and geospatial information system (GIS). He has published
a number of articles on automatic techniques for geospatial data extraction
and integration. Prior to USC, Dr. Chiang worked as a research scientist
for Geosemble Technologies, which was founded based on a patent on
geospatial data fusion techniques and he was a co-inventor.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-061.8

