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ABSTRACT 
Detecting overlapping text from map images is a challenging 

problem. Previous algorithms generally assume specific 
cartographic styles (e.g., road shapes and text format) and are 
difficult to adjust for handling different map types. In this paper, we 
build on our previous text recognition work, Strabo, to develop an 
algorithm for detecting overlapping characters from non-text 
symbols. We call this algorithm Overlapping Text Detection (OTD). 
OTD uses the recognition results and locations of detected text 
labels (from Strabo) to detect potential areas that contain 
overlapping text. Next, OTD classifies these areas as either text or 
non-text regions based on their shape descriptions (including the 
ratio of number of foreground pixels to area size, number of 
connected components, and number of holes). The average 
precision and recall of OTD in classifying text and non-text regions 
were 77% and 86%, respectively. We show that OTD improved the 
precision and recall of text detection in Strabo by 19% and 41%, 
respectively, and produced higher accuracy compared to a state-of-
the-art text/graphic separation algorithm.    
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1. INTRODUCTION 
Detecting overlapping text from map images is a challenging 

problem, and a great deal of algorithms has been proposed to extract 
the overlapping text from map images [5]. Although the previous 
methods can detect overlapping characters, their algorithms assume 
specific cartographic styles and cannot be easily generalized for 
handling various types of maps. In [7] and [9], the authors proposed 
algorithms to extract text from United States Geological Survey 
(USGS) maps. They exploit the cartographic style of USGS maps 
(e.g., text can only overlap with road lines) to remove the non-text 
symbols and group the remaining symbols as text labels. In [2], 
authors assume that the constituent strokes of characters are usually 
shorter segments in comparison with those of graphics. Yet, for 
maps that have many overlapping non-text symbols (e.g., linear 
objects), there are often non-text constituent strokes that have a 
similar size as the text constituent strokes. In addition, the length 
threshold that defines a short segment needs to be re-adjusted if a 
different scan resolution is used. 

In our previous work [3], we developed an open source text 
recognition system, Strabo, to detect and recognize text labels in 
map images. Strabo does not handle overlapping characters well. 
Figure 1 shows two detected text labels that miss at least two 
characters due to the overlapping of text and non-text regions. 

In this paper, we present an algorithm, denoted as Overlapping 
Text Detection (OTD). The main contribution of OTD is an 
approach that exploits the differences in shapes between 

alphabetical characters and non-text symbols to detect overlapping 
text. OTD receives the detected text labels from Strabo as input and 
searches the neighboring areas of the detected text labels to find and 
recover overlapping characters. Although in this paper we 
demonstrate OTD using Strabo, OTD assumes a generic input (the 
detected text locations and recognized characters) and can work 
with other text detection and recognition algorithms.  

To detect the overlapping text areas, OTD works as follows. 
First, OTD creates the minimum enclosing box for each detected 
text label to represent each text label with its orientation. Second, 
OTD detects the potential overlapping text areas based on the 
locations and the recognition results of detected text labels. Third, 
OTD extracts the shape features of potential text areas and classifies 
the areas as text or non-text.   

The remainder of this paper is organized as follows. Section 2 
presents the overall approach for identifying the overlapping text 
regions. Section 3 describes the experimental results. Section 4 
discusses the related work, and Section 5 concludes the paper by a 
discussion of the overall findings and future research directions. 

 

 
Figure 1. The rectangles show the bounding boxes of detected text labels. In 
the top and down images some characters have not been detected due to the 
overlap of text labels and non-text symbols. 

2. Overall Approach for Identifying 
Overlapping Text Regions 

In this section we present the technical details of OTD (Figure 
2). We first provide a brief background on our previous text 
detection and recognition work (section 2.1). Then we describe how 
OTD detects overlapping text automatically (sections 2.2-2.4).  

2.1. Background: Strabo  
In our previous work [3], we developed a general approach to 

detect and recognize text labels in map images. Strabo first extracts 
text pixels from a map using text colors. Once the text pixels are 
extracted, the text detector of Strabo expands pixel areas when 
certain conditions are satisfied to group nearby pixels into characters 
and then nearby characters into strings. The conditions are based on 
cartographic labeling principles including the rules that characters 
in one map label are similar in size and are closer than the characters 
in two separate labels. Because map labels can be in various 
orientations, Strabo detects the label orientations automatically and 
rotates every label to the horizontal direction. Finally, Strabo uses 
an Optical Character Recognition (OCR) package (e.g., Tesseract-
OCR) to convert the horizontal text labels to machine-readable data. 
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Strabo sends the bounding boxes, character recognition results, and 
orientations of the detected text labels to OTD. 

 

 
Figure 2. The Workflow of OTD. 

2.2. Compute the Minimum Enclosing Box for 
Detected Text Labels 

To explore the neighborhood of the detected text labels for 
recovering overlapping characters, OTD needs to have a bounding 
box that represent each detected text label with its orientation and 
location. OTD calculates the minimum enclosing box (MEB) to 
represent the detected text labels and their orientations. A MEB for 
an object is the smallest bounding box within which all points of 
object lie. The orientation of a MEB represents the orientation of the 
detected text label. The left image in Figure 3 shows the MEB of the 
label “School”. Since “School” is horizontal, its MEB is a horizontal 
rectangle. The right image in Figure 3 shows MEB of the label 
“STREE”. Since “STREE” is non-horizontal, its corresponding 
MEB is a rotated (from the horizontal direction) rectangle.  

 

 
Figure 3. Detected text labels (from Strabo) “School” and “STREE” and their 
corresponding minimum enclosing boxes (from OTD). 

2.3 Detect the Potential Character Areas 
In this section we explain how OTD detects the potential text 

areas in the neighborhood of the detected text labels. The dashed 
areas in Figure 4 are potential text areas for the labels “Allot”. The 
potential text areas may contain one or more overlapping characters. 
Since OTD does not make a prior assumption about the number of 
overlapping characters, it iteratively explores whether or not there is 
a character in the potential text areas.  

In every iteration OTD creates a rectangle that has the same 
dimension (e.g., width, height, and orientation) as the minimum 
enclosing box of one character. We call this rectangle as the 
potential character area (i.e., one potential text area could contain 
one or more potential character areas). In Figure 5 the blue rectangle 
is the minimum enclosing box of the label “ALL”, the red rectangle 
is the minimum enclosing box of character “A”, and the purple 

rectangles are the first potential character areas on either side of 
“ALL”.  

OTD classifies the potential character areas as text or non-text 
based on their shape features. If OTD classifies the potential 
character area as text, it continues to explore the rest of areas. This 
classification process has two stopping criteria: (1) OTD stops if a 
potential character area has too few foreground pixels, or (2) if two 
successive potential character areas are classified as non-text (the 
classification process is discussed in section 2.4). The reason for the 
second stopping criterion is that the probability of finding a 
character after two successive non-text areas is low. For instance, 
assuming OTD classifies the potential character area correctly with 
a success rate of 70%, the probability that OTD classifies two 
successive potential character areas incorrectly is then 9% (30% * 
30%). 

 
Figure 4. Blue bounding boxes in both images are minimum enclosing boxes 
of labels “Allot”. The dashed areas are potential text areas. 

 
Figure 5. The blue rectangle is minimum enclosing box of label “All”, the red 
rectangle is minimum enclosing box of character “A”, and the purple 
rectangles are potential character areas. 

In the following paragraphs, we explain how OTD computes 
the orientation, width, and height of a potential character area. The 
orientation of potential character area is the same as the orientation 
of the minimum enclosing box of a detected text label. The width 
and height of a potential character area depend on the recognized 
characters (of the detected label) and whether the potential character 
area is a prefix or postfix to the detected label. 

For each detected text label, OTD first computes its width and 
the number of characters inside it from the text recognition results 
(of Strabo). By dividing the bounding box width by the total number 
of recognized characters, OTD computes the average character 
width for that detected text label. Because uppercase and lowercase 
characters can have significantly different character width, the 
average character width cannot be used directly for generating the 
potential character areas.  

To compute the width of a potential character area, OTD 
considers three scenarios for detected text labels (Figure 6). In 
Figure 6 and 7 the purple rectangles show bounding boxes of the 
detected text labels, and the blue rectangles show the potential 
character areas. In Figure 6 “Width” is the width of detected text 
label, “N” is number of characters of the detected text label, 
“Width/N” is the average character width of detected text label, and 
ULWR is the ratio of uppercase character width to lowercase 
character width (Uppercase-to-Lowercase-Width-Ratio).  

The three scenarios for computing the width of detected text 
labels are as follows. The first scenario represents the detected text 
labels that have their first recognized character in uppercase and the 
rest of characters in lowercase (the top image in Figure 6). In this 
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case since the first uppercase character of text label has been 
detected, OTD does not explore the left potential character areas. 
The width of the right potential character area (for finding lowercase 
characters) is the same as the average character width, which is 
Width divided by N. Here we assume that the number of lowercase 
characters in the detected label is larger than uppercase characters 
and hence the average character width is similar to the width of a 
lowercase character. 

The second scenario represents the detected text labels that 
have first character in lowercase (the middle image in Figure 6). In 
this case OTD expects to detect an uppercase character in one of the 
potential character areas to the left of the detected label. Since in 
general the average width of uppercase characters is greater than the 
average width of lowercase characters, the width of the left potential 
character area is ULWR times greater than the average character 
width. The width of right potential character area is the same as 
average character width (Width divided by N).  

The third scenario represents the detected text labels that have 
all characters in uppercase (the bottom image in Figure 6). In this 
case, if there are overlapping characters in the left or right potential 
character areas, they must be in uppercase. The width of the left and 
the right potential character areas are the same as the average 
character width (Width divided by N).  

 
Figure 6. Three scenarios for computing width of potential text areas. 

To compute the height of the potential character areas, OTD 
also considers three scenarios of the recognized text (Figure 7). In 
English scripts, some characters have larger heights than the other 
characters. Typically, all uppercase characters have an equal height. 
Characters “b”, “d”, “f”, “h”, “k”, “l”, and “t” have the same height 
as the uppercase characters, and they are right on top of the writing 
line.  Characters “g”, “j”, “p”, and “q” have the same height as the 
uppercase characters but more than half of their shape is under the 
writing line. The rest of the English characters have smaller heights 
and they are located on top of the writing line. We consider all 
uppercase characters and “b”, “d”, “f”, “h”, “k”, “l”, “t” as the first 
group, characters “g”, “j”, “p”, and “q” as the second group, and the 
rest as the third group. 

Figure 7 shows the three scenarios for computing the height of 
detected text labels where “Height” is the height of detected text 
label, “FTHR” is First-to-Third-Group-Height-Ratio, and FSHR is 
First-to-Second-Group-Height-Ratio (explained in the following 
paragraphs). The first scenario represents the text labels that have 

all characters from the third group (the top image in Figure 7). In 
this case, the height of the potential character area is FTHR times 
the height of the minimum enclosing box of the detected label. The 
second category consists of text labels with characters from the 
second and third groups (the middle image in Figure 7). In this case, 
the height of the potential character area is FSHR times the height 
of the minimum enclosing box of the detected label. The third 
category consists of the text labels that have at least one character 
from the first group (the bottom image in Figure 7). In this case, the 
height of the potential text areas is the same as the height of the 
minimum enclosing box of the detected labels. 

As explained in the previous paragraphs, we use the ULWR, 
FTHR, and FSHR ratios to compute the height and the width of 
potential character areas. ULWR is the ratio of the average widths 
of uppercase characters to the average widths of the lowercase 
characters. FTHR is the ratio of the average heights of characters in 
the first group to the average heights of the characters in the third 
group. FSHR is ratio of the average heights of characters in the first 
group to the average heights of characters in the second group. The 
measure of these three aforementioned ratios depend on the font 
type and do not change with the scanning resolution. To estimate the 
three aforementioned ratios, we use the Arial font which has 
common shape features of the font types in our test maps (section 3). 
We empirically compute the measures of ULWR, FTHR, and FSHR 
for Arial font, which are 1.3, 1.5, and 1.36, respectively.  

 
Figure 7. Three scenarios for computing height of potential text areas.  

2.4 Extract Shape Features 
After computing the size and location of potential character 

areas for every detected text label, OTD scans the foreground pixels 
of these detected areas (the foreground pixels can contain text and/or 
non-text objects). OTD uses four shape features to classify the 
potential character areas as text or non-text label. These features are: 
(1) the ratio of the number of foreground pixels to the size of a 
potential character area, (2) the number of connected components, 
(3) the number of holes, and (4) the presence of linear objects in a 
potential character area. 

The first feature uses the ratio of number of foreground pixels 
to the size of potential character area. In the minimum enclosing box 
of a character, the proportion of the foreground pixels to the size of 
the bounding box cannot be less than a specific threshold (Figure 8). 
We empirically define the pixel-to-size-ratio threshold as 0.2. 
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Figure 8. English lowercase and uppercase characters and their 
corresponding bounding boxes. 

The second feature is based on the number of connected 
components. Except “i” and “j”, the rest of the English characters 
has only one connected component. Although the number of 
connected components of English characters is at most two, the 
potential character areas do not always completely encompass every 
pixel of a character and can contain pixels from other symbols (e.g., 
an overlapping road). The left image in Figure 9 shows the text label 
“Grisz”. Since characters “G”, “r”, “s”, and “z” overlap with lines, 
the only detected character is “i”. Since “i” has a smaller width than 
the other characters of text label “Grisz”, OTD cannot create 
potential character areas with the exact width as the overlapping 
characters. In the result (the right image of Figure 9), the majority 
of the potential character areas have more than one connected 
component. Since such cases could appear, OTD considers the 
potential character areas that contain more than five connected 
components as non-character areas.    
 

 
Figure 9. The left image shows potential character areas for the detected text 
label “Grisz”. In the right image, each color shows a connected component in 
each potential character area. 

The third feature limits the number of holes in a character. The 
majority of English characters do not have any hole in their 
structure. The rest of the characters have either one hole or two 
holes.  Although the maximum number of holes in a character is 
two, the potential character areas could contain partial characters 
(e.g., Figure 9). OTD considers the potential character areas that 
contain more than five holes as non-character areas.  

Maps usually contain many linear objects such as roads and 
boundaries. These linear objects can overlap with characters. The 
forth feature helps OTD to find the potential character areas that 
contain only non-overlapping linear objects. To detect non-
overlapping linear objects, OTD explores the intersections of the 
connected components in a potential character area and the area 
edges. If a potential character area contains a connected component 
that intersects two parallel edges of the area, the connected 
component can be a linear object. Figure 10 and 11 show four 
potential character areas that contain a connected component 
intersecting two parallel edges.  

Depending on the intersecting edges, in Figure 10 OTD 
considers the height of the area as the length of the connected 
component while in Figure 11 uses the width. In both cases, OTD 
divides the number of foreground pixels of the connected 
component by the length to calculate the thickness of the 
component. A linear object has a smaller average thickness than an 
overlapping linear object (with a character). Therefore, if the 

average thickness is smaller than a threshold OTD classifies the 
connected component as a linear object. 

 

 
Figure 10. The left image shows a character overlapping with a linear object 
and the right image shows a linear object. 

 
Figure 11. The left image shows a character overlapping with a linear object 
and the right image shows a linear object. 

3. Experiments 
We tested the performance of OTD on 1920 6-inch Historical 

Ordnance Survey maps of the United Kingdom (UK). We tested on 
10 tiles within these scanned maps, each covering 1,000 x 1,000 
square meters in the TQ grid (near London) of the British National 
Grid (equal to 1,512 x 1,512 pixels). 

We performed two experiments to evaluate the OTD algorithm. 
First, we evaluated OTD in detecting and classifying overlapping 
character areas. Next, we evaluated the overall performance of text 
detection in Strabo before using OTD, Strabo after using OTD, and 
compared the result with a baseline approach from Cao et al.’s 
algorithm [2]. 

For the first experiment, OTD received the bounding boxes, 
character recognition results, and orientations of the detected text 
labels from Strabo. OTD explored the potential character areas of 
text labels to detect and classify overlapping characters. For each 
detected text label from Strabo, we manually identified the missing 
characters as the ground truth (i.e., the text areas near the detected 
text labels that were not detected by Strabo).  

Table 1 shows the precision and recall of the first experiment. 
The last column is the number of ground truth. The average 
precision of OTD for detecting the overlapping characters in 10 map 
images was 77% and the average recall was 86%. The image with 
the lowest recall was image 4. The reason that image 4 had low 
recall was that it had only two false negative and two true positive. 
In other words, there were not enough ground truth in image 4. 
Figures 12-15 show example results of OTD. 

 

 
Figure 12. In the left image, OTD recovered two overlapping characters (“No”) 
of the detected text label “rthend” from the potential character area to the left 
of label. In the right image, OTD recovered two overlapping characters (“ts”) of 
the detected text label “Smyat” from the potential character area to the right of 
label. 

 

Figure 13. In the left image, the label “S” was detected by Strabo. By exploring 
the potential character areas to the right, OTD detected the overlapping 
character “P”. In the right image, the label “B” was detected by Strabo, and 
OTD recovered the overlapping character “M” by exploring the potential 
character areas to the right of label.  
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Figure 14. Top image: OTD detected four missing characters (“hool”) of the 
detected text label “Sc” (from Strabo). Bottom image: OTD detected two 
missing characters (“W” and “e”) of the detected text label “est Hous”. 

 

Figure 15. In the left and right images, OTD recovered the overlapping 
characters for the non-horizontal labels “Aven” and “uria” detected by Strabo. 
In the left image, OTD recovered two characters “ue”. In the right image, OTD 
recovered the uppercase character “B” to the left and characters “l Gd” to the 
right.     

Table 1. Precision and Recall of OTD in 10 test map images. 

 Precision Recall Number of 
Ground Truth 

Image 1 86% 100% 18 
Image 2 73% 95% 31 
Image 3 78% 92% 64 
Image 4 100% 50% 4 
Image 5 72% 86% 108 
Image 6 62% 89% 15 
Image 7 88% 80% 53 
Image 8 74% 78% 16 
Image 9 81% 81% 65 
Image 10 77% 80% 31 
Average 77% 86% 405 

 
The errors in OTD were from three main categories. First, OTD 

could not correctly classify the text labels that were located in the 
neighborhood of many non-text symbols (Figure 16). In this case 
either the number of connected components or number of holes in 
the potential character area were more than the thresholds. Second, 
OTD could not correctly classify non-text symbols that had similar 
shape features as characters (Figure 17). In this case, the number of 
connected components and number of holes in the potential 
character area are usually less than specified thresholds. To solve 
the two aforementioned issues in our future work, we could explore 
whether or not each of connected components or holes in the 
potential character area could be a part of a character based on their 
shape features. Third, incorrect results from Strabo lowered the 
accuracy of OTD (Figure 18 and 19). If Strabo computed incorrect 
orientations or recognition results for the detected text labels, OTD 
could not find the accurate potential character areas.  

 

Figure 16. OTD explored the potential character areas of the detected label 
“MA”. OTD classified the overlapping characters “L” and “O” as text. Since 
characters “D” and “N” overlapped with many non-text symbols, the number of 
holes was more than the specified threshold and OTD misclassified “D” and 
“N” as non-text.  

 
Figure 17. In the left image, OTD explored the potential character areas of the 
detected label “urch”. OTD explored the left potential character areas of 
detected label and classified them as text (“Ch”). The right potential character 
areas are non-text labels with similar shape features as text. OTD 
misclassified the right potential areas as text. In the right image, OTD explored 
the right potential areas of the detected label “Hous”. OTD classified the 
overlapping character “e” as text and also misclassified its neighboring non-
text symbol as text.     

 
Figure 18. The left image shows the detected labels “Cha”. Since Strabo 
recognized the label as “Cfza” and OTD used the number of recognized 
characters for computing the average character width, OTD could not detect 
the exact potential character areas. The right image shows detected label 
“rewe”. Since Strabo recognized the first character of the detected labels as 
uppercase (“R”), OTD did not explore the left potential character areas and the 
uppercase character “B” could not be retrieved.    

 
Figure 19. Due to the incorrect orientations detected by Strabo, OTD could not 
detect the correct potential text areas of detected labels.  

For the second experiment, we evaluated the performance of 
detecting individual text labels using the Cao et al.’s algorithm [2], 
using Strabo without OTD, and using Strabo with OTD. Table 2 and 
3 show the precision, recall, and F-measure of experiment results.  
As shown in table 2 and 3, OTD improved the precision, recall, and 
F-measure of text detection in Strabo by 19%, 41%, and 29%, 
respectively. OTD produced more accurate results compared to Cao 
et al.’s algorithm and improved the precision, recall, and F-measure 
by 538%, 83%, and 231%, respectively. The ground truth in this 
experiment was every text label in the test map. Since the output of 
all tested algorithms were bounding boxes that contain text labels, a 
true positive for this experiment was a bounding box with the 
following features: (1) a bounding box that were completely 
encompassed the minimum enclosing box of a text label, (2) a 
bounding box with a width less than 1.5 times the width of the 
minimum enclosing box of detected text label, and (3) a bounding 
box with a height less than 1.5 times the height of the minimum 
enclosing box of detected text label. In Figure 20, the blue rectangles 
are the minimum enclosing boxes of the ground truth “Allot” and 
the orange rectangles are bounding boxes of detected text labels. 
Since the width and height of detected text label are less than 1.5 x 
the width of text label or 1.5 x the height of text label, we considered 
the detected text label as a true positive. This orange rectangle 
served as a buffer for which OCR software could still treat the 
detected label as a single line text.  
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Figure 20. The blue rectangles show the minimum enclosing boxes of the text 
label “Allot”, and orange rectangles show the bounding box of the detected 
text label. 

Table 2. Precision and recall of text detection for Cao et al.’s 
algorithm, Strabo without OTD, and Strabo with OTD in 10 test 
maps. “P” in table is precision, “R” is recall, “GT” is the 
number of Ground Truth, and Avg is Average. 

 Cao et al.  Strabo OTD 
GT P  R P R P R 

1 20% 61% 77% 63% 97% 84% 38 
2 10% 27% 50% 52% 66% 61% 83 
3 13% 26% 53% 38% 73% 60% 72 
4 2% 31% 42% 43% 39% 49% 35 
5 13% 27% 34% 29% 54% 58% 91 
6 7% 37% 42% 37% 48% 39% 38 
7 15% 32% 75% 38% 69% 52% 71 
8 5% 38% 67% 54% 58% 69% 26 
9 5% 21% 30% 22% 42% 40% 73 
10 13% 29% 26% 39% 25% 46% 93 
Av
g 8% 30% 43% 39% 51% 55% 

 
620 

 
The Cao et al.’s algorithm received three parameters as input. 

We tested the Cao et al.’s algorithm on 10 different sets of 
parameters to have the best results for each test map. OTD 
outperformed the precision and recall of Cao et al.’s algorithm. 
Figures 21 and 22 show the results of the three aforementioned 
experimental settings. The top images of Figures 21 and 22 (results 
of Strabo using OTD) show the bounding boxes of the detected text 
labels (from Strabo) and potential character areas. As shows in the 
top image of Figure 21, OTD explored the potential character areas 
of text labels on either side of a detected label. If OTD classified the 
detected potential character area as non-text, it stopped to explore 
the rest of potential areas (e.g., the text label “PO” in top image of 
Figure 21). If OTD classified a detected potential character area as 
text, it continued to explore the rest of potential areas (e.g., the right 
side of text label “Sc” in top image of Figure 21). The middle and 
bottom images of Figure 21 and 22 show the results of Strabo 
without using OTD and Cao et al.’s algorithm, respectively. In Cao 
et al.’s algorithm, due to the assumption that non-text constituent 
strokes have similar size as text constituent strokes, many non-text 
symbols were detected as text. Cao et al.’s algorithm connected 
some of text labels and non-text symbols (which have been detected 
as text) and hence their results contain large bounding boxes which 
are as big as half of map size. 

Table 3. F-Measure of text detection results for Cao et al.’s 
algorithm, Strabo before using OTD, and Strabo after using 
OTD. 

 Cao et al.  
F-measure 

Strabo  
F-measure  

OTD  
F-Measure 

Image 1 30% 70% 90% 
Image 2 14% 51% 64% 
Image 3 17% 44% 66% 
Image 4 4% 42% 43% 
Image 5 18% 31% 56% 
Image 6 11% 39% 43% 
Image 7 21% 50% 59% 
Image 8 9% 60% 63% 
Image 9 8% 25% 41% 
Image 10 18% 31% 33% 
Average 16% 41% 53% 

 

 
Figure 21. The top image is the result of text detection from Strabo after using 
OTD. The rectangles show the minimum enclosing boxes of the detected text 
labels and the potential character areas. The middle image shows the results 
of Strabo before using OTD. The rectangles show the detected text labels. 
The bottom image shows the results from Cao et al.’s algorithm. The 
rectangles show the results of text detection. 
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4. Related Work 
There exists abundant work in the area of text detection and 

recognition, specifically for processing map documents. Yet, 
recognizing map labels in scanned maps in general is still not a 
solved problem [4, 8]. This is because most of the previous work 
assume specific cartographic styles (e.g. road shapes and text 
format), which make their algorithms difficult to adjust for handling 
various map types and scan resolutions.  

Fletcher et al. [6] present an algorithm to extract strings in 
various orientations and font styles from mixed text/graphics 
images. Their algorithm uses the Hough transformation, widths, 
heights, and distances between individual connected components to 
group characters for extracting text labels. Their method can only 
extract non-overlapping characters.  

Cao et al. [2] present an algorithm to detect overlapping text in 
document images. Their algorithm first removes dashed lines, 
applies a thinning operator, and then searches for line intersections 
to identify line segments. To recover the overlapping text, their 
algorithm assumes that lines of characters are shorter than lines of 
graphics. Therefore, the thinned foreground objects are decomposed 
into line segments and shorter lines are grouped into characters. This 
assumption only holds for specific map types and the length 
threshold varies significantly for the same map with different scan 
resolution.    

Tombre et al. [10] extend the work of Fletcher et al. [6] to 
handle overlapping characters in graphic-rich documents. Their 
algorithm for identifying overlapping characters is similar to Cao et 
al. [2]. Their algorithm assumes that the overlapping characters 
intersect non-text objects at only one location (i.e., points that text 
and graphic meet). In maps, especially historical maps, characters 

Figure 22. Example text detection results. The top images are the result of text detection from Strabo after using OTD. The middle images show the 
results of Strabo before using OTD. The bottom images show the results from Cao et al.’s algorithm.  
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very often overlap with non-text objects significantly and the 
aforementioned assumption does not work.   

Li et al. [7] present an algorithm to extract street labels from 
the USGS topographic maps. The street labels in USGS maps very 
often only overlap with street lines. Their algorithm first detects 
non-overlapping characters, searches for nearby parallel lines 
(streets), and then follows the line direction to detect overlapping 
characters. Their algorithm cannot extract overlapping characters 
that intersect with other non-text symbols (e.g., buildings, trees).  

Pezeshk et al. [9] present an algorithm to remove linear objects 
and some specific types of graphic objects (e.g., solid objects and 
dashed lines) in maps to extract text from images. Similar to Li et 
al. [7], their algorithm assumes a specific cartographic style and can 
only apply to maps that are similar to the USGS topographic maps 
(i.e., with a similar road symbology and label placement).   

All of these algorithms [2, 6, 7, 9, and 10] assume that the 
characters only touch straight roads or linear objects, they do not 
consider the case that the characters overlapping curved lines or 
symbols (e.g., trees and buildings). In contrast, our approach utilizes 
shape features based on font types and are independent from the 
(scan) resolution and other cartographic styles. 

Velazquez et al. [11] compute imaginary lines following the 
orientation of non-overlapping characters to create a rectangle for 
detecting overlapping characters along the same orientation. 
However, this algorithm can only detect overlapping characters 
between non-overlapping characters.  

In addition, there is a great deal of work for recognizing text in 
photos of natural scenes [12], and a number of them reports high 
recognition accuracy, such as the Google PhotoOCR using deep 
learning and large language models [1]. This type of text recognition 
work generally assumes that text regions have a significant 
difference in response to a certain image filter (e.g., edge detectors 
and corner detectors) to first localize text regions in natural scenes. 
This assumption does not apply to document images (e.g., maps) 
where graphical features in documents can have similar response to 
these image filters as text. 

5. Discussions and Future Work 
The contribution of this paper is an approach that exploits the 

differences in shapes between characters and non-text symbols to 
detect overlapping text. OTD receives the detected text labels from 
a text detector/recognizer, creates the minimum enclosing boxes for 
text labels, detects the potential character areas, and classifies the 
areas as text or non-text based on their shape features. We showed 
that OTD outperformed two existing approaches (Strabo and Cao et 
al.’s algorithm) in text detection. In this paper we use empirical 
thresholds to classify potential character areas to text and non-text. 
We plan to test a broader range of map types and use machine 
learning approaches like the artificial neural networks to 
automatically classify potential text areas.     
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