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Abstract: Air quality models (AQMs) are useful for studying various types of air pollutions and provide the possibility to

reveal the contributors of air pollutants. Existing AQMs have been used in many scenarios having a variety of goals, e.g.,

focusing on some study areas and specific spatial units. Previous AQM reviews typically cover one of the forming elements

of AQMs. In this review, we identify the role and relevance of every component for building AQMs, including (1) the

existing techniques for building AQMs, (2) how the availability of the various types of datasets affects the performance,

and (3) common validation methods. We present recommendations for building an AQM depending on the goal and the

available datasets, pointing out their limitations and potentials. Based on more than 40 works on air quality, we concluded

that the main utilized methods in air pollution estimation are land-use regression (LUR), machine learning, and hybrid

methods. In addition, when incorporating LUR methods with traffic variables, it gives promising results; however, when

using kriging or inverse distance weighting techniques, the monitoring stations measurements of air pollution data are

enough to have good results. We aim to provide a short manual for people who want to build an AQM given the constraints

at hands such as the availability of datasets and technical/computing resources.
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1. Introduction

The long-term exposure to air pollution not only causes

deterioration of the respiratory system [1, 2] but also

increases the risk of cardiovascular and atherosclerosis

diseases [3, 4]. Poor air quality might adversely affect

cognition, lead to mental illness such as dementia [5] and

others [6], and cause preterm labor and birth [7]. Further-

more, ignoring the principal causes of air pollution or

underestimating pollution sources could lead to inaccurate

results, such as areas near airports where the air pollution

emission can be more serious [8]. Therefore, air quality

prediction and forecast are still open, significant, and

challenging tasks. With a growing number of residents

living in urban areas, the major concerns become (1) how

to identify the primary sources that lead to the air pollution,

(2) how to quantify the impacts of these sources on air

quality, and (3) how to reduce the threats of air pollution to

the human health as well as the environment.

There exist many reviews on air quality modeling

(AQM), covering a variety of topics. Ryan et al. [9] sum-

marize the history and applications of land-use regression

(LUR) models, which have been widely used to charac-

terize the intra-urban air pollution exposure. The authors

also discuss the similarities and the differences in the

variables among the six studies. Hoek et al. analyze 25

LUR cases and point out that LUR has a better perfor-

mance than other traditional techniques, such as kriging

and dispersion models in [10]. They also propose a possible
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improvement of LUR, like enabling its transferability to

different areas and including more predictors in a LUR

model. In contrast to the two aforementioned reviews of

AQMs, Zhang et al. focus on real-time air quality fore-

casting (RT-AQF) [11, 12]. The authors discuss the his-

torical milestones and accessibility of primary existing

techniques of RT-AQF in review part I [11], and the pos-

sible ways of improving the accuracies of RT-AQF models

as well as the challenges that limit their performance and

the prospects in part II [12].

This paper aims to provide an extensive literature review

based on a multitude of works on air quality prediction and

forecasting, pointing out the diverse elements of air quality

modeling as follows:

1. reporting the performance and strengths of the existing

air quality predicting and forecasting methods;

2. discussing the role of data on these models, including

datasets accessibility (free, for a fee, or restricted),

types (directly measured or surrogated), and sources

(e.g., traffic data and land-use data) since the data

availability is typically the most critical aspect when

selecting an applicable air quality model;

3. summarizing common ways of assessing and validat-

ing air quality models;

To the best of our knowledge, there is not yet a review

covering all the aspects mentioned above. The remainder

of the paper is organized as follows. Section 2 categorizes

the existing techniques for air quality predicting and fore-

casting, which makes the selection of technical methods

easier, based on the intent to build an AQM. Section 3

discusses how data quality and availability play a crucial

role in selecting an air quality modeling method. Section 4

presents the common methods of AQMs’ validation. Sec-

tion 5 makes recommendations on AQMs based on the

available data inputs and the intended goals. Section 6

presents an example of a real case study of PM10 concen-

trations estimation using three techniques: nearest neigh-

bor, IDW, and kriging. Finally, Sect. 7 discusses the

review and provides a general conclusion of the work.

2. Air Quality Predicting/Forecasting Techniques

Having a clear idea (given in this Sect. 2) about the tech-

niques of modeling and analyzing air pollutants can lead to

a better interpretation of AQM results, help select a proper

air quality model, and also identify the primary contribu-

tions that intensify air pollution proportion. Although

various techniques have been developed to predict or

forecast air pollutants, it is essential to choose an appro-

priate method based on the goal of the application (e.g.,

predicting/forecasting air pollution, revealing air pollution

contributors, etc.) and the data (e.g., the network density of

monitoring stations and land-use information). For exam-

ple, if we have a dense network or aim at adding a moni-

toring site to the network, the dispersion modeling (e.g.,

CALINE: California Line Source Dispersion Model) is the

right fit, due to its easy adaptation to new pollutants or

geographic areas without adding more monitoring sites in

the studied area.

This section classifies AQM techniques into four cate-

gories: land-use regression (LUR), machine learning,

hybrid techniques, and other techniques that are less fre-

quent in the articles we review.

2.1. Land-Use Regression (LUR)

Land-use regression (LUR) is a technique that develops

stochastic models to predict air pollutant concentrations at

a given site by utilizing the predictor variables (e.g., the

surrounding land use, road network, traffic, physical envi-

ronment, and population) based on geographic information

systems (GIS) and the monitoring of air pollutant mea-

surements. The SAVIAH (Small Area Variations in Air

quality and Health) project first studies to model small-

scale variations of air pollutants by LUR [13] and

demonstrates that the GIS-based regression mapping is a

robust tool when predicting air quality at a fine-spatial

resolution with limited monitoring data. When combined

with effective strategies, LUR can be used to explain the

air pollution conditions (e.g., seasonal variations in human

activities: population density is a significant air pollution

source only in winter, inversely in summer where industrial

indicators are more influencing in this season) and to reveal

the main causes of air pollution [14]. Besides predicting air

pollutant concentrations, LUR can also infer the influence

of the surrounding environment. Chen et al. reveal that the

exposure to heavy traffic might affect human cognition, by

utilizing the satellite-based image of PM2.5 measurements

with other variants (e.g., road length, age, and sex) as

inputs of the LUR model [5]. The authors find that living

close to a major road might cause the increased incidence

of dementia. The ‘‘right choice’’ of variables plays an

important role in building LUR models. Ross et al. affirm

in [15] that with the traffic information and land-use vari-

ables, the LUR model reaches more than 60% of the

explained variation in PM2.5 concentrations over a wide

area for three different periods of the year and counties.

Also, adding more relevant variables in LUR model would

affect performance positively. Moreover, Ross et al. raise

the explained variation of air pollution from 54 to 79% [16]

with a traffic variable (traffic within 300 m buffer to the

monitoring stations) as the addition input. ADDRESS (A

Distance Decay REgression Selection Strategy) is a strat-

egy to select optimized buffer distances for potential
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predictors to maximize model performance. ADDRESS

models traffic-related air pollutant in Los Angeles, an

extraordinarily complex cityscape. By computing the cor-

relation coefficients of spatial covariates (commercial,

residential, industrial, and open land-use data) with resid-

uals of exposure concentrations, the model creates a series

of distance decay. This strategy enhances the traditional

LUR with normally distributed prediction and accuracy

varying between 87 and 91% [17].

LUR performance can also be enhanced by coupling it

with some air pollution developed approaches. Lee et al.

[18] use the ESCAPE (the European Study of Cohorts for

Air Pollution Effects) modeling approach with LUR and

show its effectiveness in spatial variation explanation, even

when it comes to a high density of traffic roads and pop-

ulation area like Taipei city. ESCAPE is a study of long-

term air pollution exposures effecting on human health for

15 European countries. The authors apply this approach in

developing LUR models of Taipei which select the top

relevant inputs to take in account in the final model, by

conducting multiple analyses on the intended predictors to

get a model with better accuracy. Furthermore, the LUR-

ESCAPE-estimated exposures have a wider scope of pol-

lutants variability and provide results with better spatial

resolution compared to the two classic spatial interpolation

algorithms, i.e., ordinary kriging and the nearest neighbor

(e.g., measurement site) methods. The results could be

helpful in assessing the influence of long-term exposure to

nitrogen dioxide (NO2) and nitrogen oxides (NOx) on the

epidemiological cohorts in the Taipei Metropolis.

LUR method strongly relies on the availability of spatial

data (land uses) without considering the spatial effects,

such as spatial non-stationarity and spatial autocorrelation,

that limit the LUR performance by reducing the prediction

accuracy and increasing uncertainty. Bertazzon et al.

develop a wind-LUR model [14], which is a variant of

LUR model including wind as a relevant meteorological

variable, which could alleviate the spatial non-stationarity

and spatial autocorrelation problems. In this work, the

authors presented an alternative model of two models, i.e.,

spatially autoregressive model (SAR) which solves spatial

non-stationarity and geographically weighted regression

model (GWR) that deals with spatial autocorrelation. They

substitute SAR and GWR by one single LUR model which

is mathematically simpler and outperforms the traditional

LUR with an improvement of 10–20% in mean R2.

Up to this day, LUR is still showing its powerful ability

in air quality prediction. Taking Houston Metropolitan

Area, USA, as an example, Zhai et al. prove how the

challenge of the spatial scale should be further investi-

gated: The impact of a predictor in a specific distance/

radius within a study area does not have the same effect in

a different study area (spatial non-stationarity) [19]. The

authors affirm that the need for a clear understanding of the

physical–chemical dispersion mechanisms is not always an

obligation in every AQM development. This LUR model

achieves a mean error rate (MER) under 20% with the best

R2 = 0.78, the smallest MER = 11.84%, and the lowest

root mean square error (RMSE) = 1.43 and outperforms

the ordinary kriging by using variables at the optimized

spatial scales.

2.2. Machine Learning

Machine learning is powerful at predicting unknown values

by building models with data, based on computer science

and statistical techniques. For example, Basu et al. develop

an algorithm that identifies interactions in a system by

using iterative random forests that could be applied to

many scientific fields [20]. Several studies have used var-

ious machine learning algorithms (e.g., neural network,

random forest (RF), and regression) to model air quality

due to their promising performance for more than a decade.

For instance, the artificial neural network (ANN) approach

was used back to the year of 2003 for particulate matter

(PM2.5) prediction [21].

By comparing the advantages and limitations of three

neural network algorithms in predicting the air pollutants:

multilayer perceptron neural network (MLP), square mul-

tilayer perceptron (SMLP), and radial basis function net-

work (RBF), Ordieres et al. conclude that RBF is the best

predictor among these three algorithms, outperforming the

other two by shorter training times and better stability (the

independency of estimation variability on the used training

data). In general, ANN is still a good option for air quality

prediction that achieves better results than the other clas-

sical models, like persistence (which is a simple model

supposing that the pollutant concentration level at a

specific time corresponds to the value that occurred the

same time the day before yt ¼ xt) and linear regression

models, as claimed in [21].

Besides, Xu et al. [22] propose a support vector

regression (SVR)-based bi-dimensional exploration

framework to predict PM2.5 in Beijing in 2014. This model

considers the time-lagged PM2.5 time series from sur-

rounding monitoring stations to show how the PM2.5 con-

centrations disperse spatially and temporally. This study

deploys SVM (support vector machine) from Weka (Wai-

kato Environment for Knowledge Analysis: an easy free

tool for machine learning and data mining employment)

and finds out that with the increase in the geographical

scope and time lag, the prediction errors decreases, but the

performance improvement decreases as well. Despite this

constraint, the model achieved a good balance between

performance and modeling cost.
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Jiang et al. report in [23] that regression trees are useful

for predicting air quality as well. They detect the outdoor

air pollution based on the messages shared on social media,

Weibo (Chinese Twitter) and utilize a classifier to distin-

guish the air pollution levels in Beijing based on the neti-

zens’ posts of the city on Weibo. The authors predict the air

quality index (AQI) in Beijing using gradient tree boost

(GTB), which iteratively builds a regression tree from

residuals and outputs weighted sum of the regression trees.

By the mean of the multi-additive function of GTB, they

develop a successful monitoring and tracking model for air

pollutant prediction, using media data classification (to

classify whether a posted message by a netizen is a nega-

tive or positive one, and get by the end a classification of

all the netizens’ messages from ‘‘excellent’’ to ‘‘serious

pollution’’ categories. In this way, the social media data

could be compared to the real measurements of AQI and

multi-step filtering to take into account only social media

data about outdoor air pollution on Beijing region (discard

social media data that do not concern outdoor air pollution,

are advertising messages, and those which are by netizens

out of the studied region).

Some studies work on improving the performance of an

existing model by adding some other relevant variables or

proposing an improved version of the model to make it

more accurate. By using the results of WRF-Chem

(Weather Research and Forecasting (WRF) model coupled

with Chemistry [24] as inputs in addition to the air pollu-

tant measurements, Xi et al. [25] design a comprehensive

evaluation framework to improve the prediction perfor-

mance. They test five different machine learning algo-

rithms on four different groups of datasets where each

group includes different input features (e.g., pollution

observation, weather forecast, wind speed, etc.), and the RF

was the best performer with most of the groups. This

combination strategy leads to a 3% improvement of the

single model which is not incorporated with WRF-Chem

data. Furthermore, the authors conclude that the avail-

ability of more information increases the possibility to

enhance the model accuracy.

RF is an ensemble learning method for classification

(and regression) done by the mean of generating classifiers

as random trees and then assembling them by an aggre-

gator. Supported by the bootstrap aggregating, RF builds a

set of decision trees that contribute to predicting the air

quality index (AQI) for Shenyang city, and the aggregating

of all these trees results provides the AQI classification

[26]. In this paper, RF shows good results when compared

to three other algorithms in sensing urban air quality. As a

result, this model proves an overall precision of 81% for

AQI prediction, and since all the used data are from

Internet, it is possible to apply this method to other cities as

well. Brokamp et al. report that when combining random

forest with variables that have a significant impact on air

pollution as land-use variables (LURF), it becomes possi-

ble to cover the limitations of LUR in capturing nonlinear

relationships and complex interactions between predictors

and the outcome with a small-size training data. This AQM

shows better results than LUR with a decrease in a frac-

tional predictive error of at least 5% in most of the studied

pollutants elemental components (such as aluminum, cop-

per, and iron) and a cross-validated fractional predictive

error less than 30%, with the help of the diverse inputs

[27].

2.3. Hybrid

In this paper, we chose to give the description of ‘‘hybrid

technique’’ to any work that adopts more than one algo-

rithm category (e.g., machine learning, geo-statistic, and

land-use regression) to develop an air quality model. This

is the case for most of the spatiotemporal AQMs that study

not only the spatial aspect of air pollution but the temporal

one also, each one by a different method (see below).

Hybrid models usually consist of two or more practical

algorithms, which come out with a stronger air quality

model, providing better results than using just one single

method. For instance, Wilton et al. [28] work with the

dispersion model CALINE3 [29] for roadway pollution

prediction from the meteorological dispersion model and

then performed a LUR model using simultaneous mea-

surements over space for improving spatial concentrations

estimates. This hybrid model achieves an improvement in

R2 values for both cities Seattle and LA. In addition, the

authors capture a greater amount of the pollutant variation

(the near-road gradients) than in the traditional LUR

models, since they include roadway lengths and traffic

density as predictors.

Most hybrid techniques model the spatial and temporal

aspects separately, which allows specific processing for

each, and then aggregate the results of both. Zheng et al. try

to infer the real-time air quality by defining two separated

classifiers: spatial and temporal classifiers. The spatial

classifier uses an ANN for modeling the spatial correlation

between air qualities of different locations by taking the

spatially related features (e.g., the density of POIs and

length of highways) as inputs. The temporal classifier uses

a linear-chain conditional random field (CRF) to represent

the temporal dependency of air quality at a site by taking

the temporally-related features (e.g., traffic and meteorol-

ogy) as predictors. This model outperforms other four

standard well-known methods on five Chinese datasets

[30]. Another example of using neural network is that

Zheng et al. [31] forecast the PM2.5 concentrations in the

next 48 h at a monitoring site by aggregating the spatial

model (based on ANN) and temporal classifiers (based on
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linear regression) with a dynamic aggregator that integrates

the spatial and temporal results in a way that uses the

meteorological data as a reference of accordance. For every

station, meteorological information will be taken into

account such as wind speed, wind direction, weather state

(foggy/sunny/etc.), etc., to determine a weight for each

classifier. Also, the authors create a predictor that detects

the sudden sharp changes in the air. They verify the model

performance using 43 cities in China, and the results out-

performed all the other baseline models such as autore-

gressive moving average (ARMA), linear regression, and

regression tree. The accuracy was 75% in the first six

hours, and it remains good even when sudden changes in

air quality occur.

To study each of the spatial variability and temporal

variability independently and make use of the spatiotem-

poral variables, Li et al. [32] deal with more than one effect

of air pollution (e.g., spatial effect, temporal effect, local

effect, etc.) to develop a spatiotemporal model to predict

nitrogen oxides at a high spatiotemporal resolution,

incorporating nonlinear and spatial effects. The authors

create a constrained nonlinear mixed-effect model with

ensemble learning. Their approach integrates nonlinear

relationships, fixed and random effects from the predictors

by expressing the spatiotemporal variability of concentra-

tions with mixed-effect models. Then, they perform an

ensemble learning of all these models and carry out a

constrained optimization that copes with the constraint of

locations with large temporally incomplete data, by the

mean of minimizing the difference between the concen-

trations to adjust its corresponding prediction output. In

addition, Li et al. utilize the dispersion model CALINE4 to

estimate the mean (temporal average) of air pollutant on

roads. This approach reduces variance and enhances the

reliability of prediction, by improving the results from

initial mixed effects (that do not incorporate ensemble

learning and the proposed constrained optimization) with

R2 values equal to 0.85 and 0.86 for nitrogen dioxide (NO2)

and nitrogen oxides (NOx), respectively.

2.4. Others

In this section, we focus on all remaining AQM techniques

that are important but less frequently used than the cate-

gories discussed above.

The first example is geo-statistical techniques, which

incorporate statistics to analyze the spatiotemporal varia-

tion of the air pollutants. Fontes et al. [33] perform inter-

polation of air quality for the urban sensitive area of region

Oporto/Asprela and showed that inverse distance weighting

(IDW) is a better interpolator than kriging for this studied

region. Ramos develop in [34] a technique by combining

IDW and kriging with a well-selected set of relevant

variables. The authors show that the hybrid model out-

performs the use of each method separately. Geo-statistical

methods could be better than other techniques as Rivera-

González et al. [35] show by selecting ordinary kriging as

the best performer among the six tested methods. Ordinary

kriging, in this case, is powerful not only due to its

excellent performance on air pollutants concentrations

prediction, but also because it computes the corresponding

standard error (estimation variance) of the prediction.

Another useful technique is the regression method based

on SRS (satellite remote sensing) as applied by Guo et al.

in the work of [36], where they predict ground-level PM2.5

depending only on PARASOL level 2 AOD modeled by

four different empirical models: the linear regression

model, the quadratic regression model, the power regres-

sion model, and the logarithmic regression model. All of

them show reasonably good results but underestimate the

PM2.5 concentrations compared to the ground-level PM2.5

concentrations.

The stochastic models represent a mean of air quality

analysis as well. Sun et al. [37] use the uncommon hidden

Markov models (HMMs) and try to represent the hidden

layer by a non-Gaussian distribution. In the interest of

improving HMM, the authors implement three different

emission distribution functions: log-normal, gamma, and

generalized extreme value (GEV) to predict PM2.5 con-

centrations. Consequently, the true prediction rate could be

improved by these three non-Gaussian distributions to

150%, and more importantly, false alarms (that alert when

the air quality exceeds a defined index of pollution) could

be reduced by 78%. Yet another statistical model that gives

good results in adjusting the raw model bias [38] is Kalman

filter (KF) predictor approach. KF serves as a bias adjust-

ment tool, increasing the value of R2 from 0.43 for the raw

model forecasts to 0.90 for the KF bias-adjusted forecasts

at more than 90% of the studied sites. This model can make

the correlation coefficients with measurements higher,

besides the methodology is easily adapted for real-time

applications.

Some air quality modeling studies calibrate the AQMs

just before carrying out the prediction to enhance the per-

formance, and it is done by applying some conditions while

developing the model. This calibration’s efficiency is val-

idated afterward by one of the parameters mentioned later

in this Sect. 4. For example, Li et al. [32] impose a degree

of freedom (10) for the explanatory variables to decrease

the model’s overfitting and get better results, while the

studies [17, 18] select only the predictors with a p value

greater than 0.1. Brokamp et al. [27] perform the same

selection for their inputs, in addition to a parameter of

variance inflation factors (VIFs) that should be less than

three to keep a variable as predictor in the model to

improve the model’s R2. In several of the reviewed LUR
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AQMs in this manuscript, they adopt a stepwise approach

to determine the most relevant inputs to consider in the

model (e.g., [15, 18, 39, 40], etc.) and to get rid of all of the

unnecessary predictors.

3. Dataset Analysis

Finding available datasets is the first step when selecting an

appropriate technique for building AQMs. One needs to

consider the input datasets to the model as well as the

intent of building this model (either it is finding the air

pollution contribution for health studies [5] or determining

the air quality in green spaces [41], etc.). In this section, we

describe commonly used datasets in the reviewed articles

in sections above, with indicating when possible, refer-

ences to free and paid datasets that could be utilized to

build an AQM.

3.1. Accessibility

Data availability is one of the most critical factors for

building a good air quality model [22, 25, 42] since

incorporating more information (inputs) usually can

improve the accuracy of AQMs. In this paper, we classify

the datasets in the reviewed articles by their accessibility

into three categories: free (publicly available), paid, and

unauthorized (restricted/difficult to obtain).

3.1.1. Free, paid, and unauthorized datasets

Many studies work with free datasets that are available

online. In the case of Houston Metropolitan Area Texas,

USA, Zhai et al. use publicly available datasets (pollutant

concentrations, land use/cover, road network, and census

data) and they provide links in their article for accessing

these data [16]. Yu et al. [26] predict AQIs for Shenyang

city, China, using open data by getting traffic and road

information from Baidu and Google maps. With the

available air quality data of Ciudad Juarez and El Paso-

Mexico, Ordieres et al. determine the PM2.5 concentrations

for the remaining 16 h of the day [21]. Lin et al. extract

geographic features from OpenStreetMap, a crowdsourced

world map, for building the air quality prediction model

[43] and the forecasting model [44]. Leveraging open-

source data enables the models to be generalizable to other

study areas. Furthermore, sometimes data are available

even for a large number of cities as in [22]; the authors

predict air pollution for 190 Chinese cities based on open

data. The case of Vienna, Austria [45], is a similar case as

well, where the volunteered geographic information (VGI)

serves in generating land-use patterns, without any remote

sensing techniques or official data. However, some data are

claimed to be free, but we could not access them due to

invalid links [35, 39] (checked 14/03/2018).

Air quality modeling datasets are not always reachable

due to the state of property (data rights), only the members

of an organization (e.g., laboratory or university) can have

access to the data. Ramos et al. [34] work on the Canadian

city Calgary air quality, the dataset of this city has infor-

mation which are: public (traffic volume data, census of

population, and industrial point information), dedicated to

the members of the University of Waterloo only (road

traffic and land use), and information that they got from the

National Surveillance Air Pollution Surveillance of Canada

(air quality data, wind speed, and direction information). In

the case of Beijing and Shanghai real-time air quality

prediction, Zheng et al. use GPS trajectories from a large

number of taxis that they gather themselves [30]. In some

regions, even the pollutant concentrations are not available.

Fontes and Barros held a campaign to measure the pollu-

tant concentrations for the urbanized region of Asprela in

Oporto by themselves, and these measures are not pub-

lished nor publicly shared [33].

The last data type is the paid data. For instance,

TeleAtlas is a company that provides digital maps infor-

mation like road network data [28, 46]. These paid data

help in improving AQM performance by incorporating it

with the other existing data. Yang et al. combine SRS

images which are from paid sources with ground-based

measurements, and their model works well for the case of

NO2 pollutant [39].

We sum up useful links to free and paid data in Table 1.

3.2. The availability and quality of data

To date, the lack of data hampers the development of air

quality models as it directly influences the selection of

significant variables in explaining the air pollution varia-

tion. For example, the geographical data of the studied area

are necessary variables in the model because they describe

the topology of the region (e.g., the high vegetation cov-

ering areas would have totally different pollutant concen-

tration value from the roadway or tar roofed building)

[17, 18, 39]. Also, traffic-related information [47], meteo-

rological data [16], the number of the network monitoring

stations (known for being the main obstacle because of its

scarsity in almost all the AQMs works)

[15, 18, 19, 30, 33, 34, 39], and other information

[32, 35, 42] are required in modeling air quality. Lack of

data can lead to inaccurate results. For instance, when the

number of monitor stations is low, interpolation methods

would not perform well due to the small number of mea-

surements in contrast to when monitoring stations are

dense [44, 48–50]. Some AQMs use the surrogate or sup-

plemental variables to cover data scarcity. For instance,
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including a significant indicator of air pollution as wind

information [18, 47] shows good improvement on the tra-

ditional model and considers that meteorological variable

is the missing and needed information to enhance the

model. Surrogate variables help in many cases to cover the

lack of data by estimating real variables from other inputs

like satellite data. Due to the lack of geographic variables,

Su et al. [17] use ETM ? remote sensing data to cover the

lack of datasets and obtain more accurate prediction result

with data of greenness or soil brightness. SRS (satellite

remote sensing) data show the ability in explaining the

spatial variation of NO2 in Pearl River Delta region China

by replacing the missing industrial, geographic, and

socioeconomic data [39]. Images can be an alternative to

other essential data like when Yu et al. try to obtain the

road length and traffic congestion status by studying and

inducing it from images of public map service providers

[26]. However, sometimes even surrogate variables are still

in need of adjustment when they are coarse [39]; otherwise,

it would be useless to work with.

Meteorology variables (such as wind speed, wind

direction, and temperature) are also indicators of air

quality. Their significant role has been discussed in several

studies, knowing that meteorological elements are key

factors that affect air pollution behaviors such as pollu-

tants’ emissions, transport, and transformation. For

instance, Seo et al. [51] examine the influence of meteo-

rology on long-term air quality measurements and

observed changes in PM10 and O3 that were related to the

meteorology trends. They induce that the long-term

increase over the decade of 2002–2012 in wind speed leads

to an improvement in air quality (in addition to the applied

emission control policies), causing a ventilation of

pollutants.

Moreover, Kamińska et al. [52] analyze air pollution

effects using meteorological conditions along with traffic

information of Wroclaw city in Poland and found out that

the meteorological parameters such as wind speed are the

most important impacts in modeling PM2.5, besides traffic

flow for NOx. In another study of air quality interpolation,

meteorological data are integrated as predictors in addition

to a set of information, and Le et al. [53] use deep learning

model to estimate and predict air pollution over Seoul city.

The authors test the model performance with different

Table 1 Useful references to datasets (checked 03/04/2018)

Data type References Data References/links

Paid

(software)

[17] Traffic, Road network TeleAtlas: http://www.tele-mart.com

[36, 38] PM2.5 ground level MODIS: https://modis.gsfc.nasa.gov

[46] Road network TeleAtlas

Traffic ESRI: https://www.esri.com/fr-fr/home

[13] All dataset ARC/INFO

[32] Traffic density ESRI, ArcGIS: https://www.esri.com/fr-fr/arcgis/products/arcgis-pro

Distance to roadway ESRI

Population density ArcGIS

Free [15] Land-use data USGS: https://www.usgs.gov

Pollutant measurements EPA: https://www.epa.gov/outdoor-air-quality-data

Population density U.S. Census Bureau: http://www.census.gov/main/www/access.html

Road network ESRI: http://www.openstreetmap.org/#map=5/51.500/-0.100

[26] Weather data https://rp5.ru/Météo_Monde:Weather for 243 Countries of the World

POI (point of interest) Google maps: https://www.google.com/maps

Traffic and Road data Baidu maps: https://map.baidu.com

[34] Hourly data of PM2.5 NAPS CANADA: http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx

Meteorological measurements National Climatic Data and Information Archive of Environment Canada:

http://climate.weather.gc.ca/index_e.html

Smog info Environnement et Changement climatique Canada:

http://www.ec.gc.ca/infosmog/default.asp?lang%80=%80En&n=669E620B-1

Population density Statistics Canada:

http://www12.statcan.ca/censusrecensement/2006/ref/dict/geo021-eng.cfm

[43] Geographic data OSM: https://www.openstreetmap.org/

[47] Vehicles data https://pubs.acs.org
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input combinations (with only air pollution data, air pol-

lution and meteorological data, air pollution and traffic

volume data, air pollution and vehicles average speed data,

air pollution and external air pollution data, and air pol-

lution and all related factors). The best RMSE for inter-

polating and forecasting is the one of air pollution and

meteorological data inputs, even better than the one with

all factors included, deducing that meteorological param-

eters have the most significant role compared to the

remaining ones.

By dint of having a relevant impact on air quality, the

meteorological air quality influencers are now even studied

in a more detailed way. Xie et al. [54] investigate the role

of different wind field types on different pollutants in Pearl

River Delta region. The authors find out that PM2.5 PM10

and NO2 spatial distributions depend on the wind field

patterns. The air quality was changing following the

characteristics of each type of wind fields.

Therefore, the role of meteorology parameters in

studying and analyzing (e.g., [55]) the air quality is proved

to be very important, as well as in controlling and

improving the latter (e.g., [56]).

4. AQMs’ Validation

There are several validation methods to evaluate the per-

formance of an AQM. In this section, we choose to discuss

popular ones, with identifying the used metrics in the

discussed work in the second chapter (Table 2).

Every developed system, service, or model needs to be

validated to see whether it responds to the intended

objective. The validation step has a relevant role in eval-

uating the AQM’s performance that could not be in no case

ideal for these two reasons [57]:

– Observations express single realizations from an

infinite ensemble of cases under the same conditions,

while air quality models estimate ensemble means.

– Different sources are responsible for the model predic-

tions’ uncertainties, like random turbulence of the

atmospheric layer, input data errors, or uncertainties in

model physics [58–61].

The efficient way of evaluating air quality models is to

carry out a statistical performance analysis, which needs to

call out for specific measures. The reason for building an

air quality model defines the parameters of validation to

use, based on the studied case circumstances and condi-

tions. When the AQM is for assessing the health state, the

validation parameter to use should look for the most cor-

related causes (model inputs) with the health deterioration,

which is different from when evaluating whether a pre-

diction is good or not; here, we look for the most precise

model possible.

Different applications/technologies for AQMs require

different validation parameters to evaluate the performance

in various ways, and it is by reason that there is not a

Table 2 Examples of used validation parameters in air pollution

References Validation parameters

[17] Variance inflation factors (VIFs), Cook’s distances, Moran’s I statistic, Chow’s test, normalized mean bias (NMB), normalized

mean error (NME), and cross-validation (CV)

[40] The best fitness and the highest adjusted R2

[18] Leave-one-out cross-validation (LOOCV), R2, and R2

[39] R2, RMSE, LOOCV, and regional cross-validation (RCV)

[15] CV, RMSE, and mean absolute percentage error (MAPE)

[19] CV, R2, mean error rate (MER), and RMSE

[27] LOOCV

[21] RMSE, R2, and mean absolute error (MAE)

[23] Correlation with real measurements

[26] Precision, recall, F-score, relative absolute error (RAE), and CV

[28] CV and R2

[32] LOOCV

[30] Recall and precision

[38] R2, RMSE, NME, mean bias (MB), NMB, and R

[42] CV, RMSE, and R

[34] LOOCV, RMSE, and R2

[35] CV and RMSE

[72] R2
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general measure suitable to all cases under any conditions

[62].

4.1. The Most Used Parameters and Reasons

We do not give an exhaustive description of all the possible

parameters of air quality evaluation in this review, but we

introduce the most common ones in the studies discussed

earlier:

Root mean square error (RMSE): Adopted as the deci-

sive criteria of the model performance in many air pollu-

tion studies, RMSE expresses the difference between

values predicted by a model and the values actually

observed by the following formula in (1):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ðXobs;i � Xmodel;iÞ2

n

s

ð1Þ

R2, denoted by R2 or r2, is the coefficient of determination

representing the proportion of the variance in the

dependent variable that is predictable from the

independent variables, summed up by the explained

variation/total variation. R, correlation coefficient denoted

as R or r, is used in many works to measure the correlation

among the variables (input datasets) and between the

observed and modeled values as well, to see how much

they correlate. It varies between ? 1 and -1, where 1 is a

total positive linear correlation as in (2):

r ¼
Pn

i¼1 xobs;i � xpredic;i

� �

: yobs;i � ypredic;i

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 xobs;i � xpredic;i

� �2
:
Pn

i¼1 yobs;i � ypredic;i

� �2
q

ð2Þ

p value is the correlation between variables could be

evaluated by p value, which we compare to the significance

level (usually represented by a = 0.05). In case p[ a, then

the correlation is different from 0. If not, then it is

impossible to conclude that the correlation is different from

0.

Cross-validation is one of the most common techniques

for assessing the variation of model’s prediction perfor-

mance. By dividing the dataset randomly into X folds, the

model would be refitted X times with the set of each fold

removed in turn from the training set, knowing that part of

the data is for fitting the different models and the remainder

data for measuring the predictive performance of the model

by the validation errors (that could be done by one of the

discussed measures above). By the end, the model with the

best performance is adopted [63]. Cross-validation is a

good solution for detecting and preventing overfitting

problem as well.

Table 2 presents the utilized parameters of validation in

the previously discussed articles.

AQMs can also be evaluated with respect to spatial or

temporal coverage of the validation data. For example,

LUR models are mostly used for spatial analysis rather

than temporal dimension. The spatial scale can differ from

each other, e.g., it can be a city [14, 16, 18], a number of

cities [15, 38], or even a whole state [19]. Besides, some

studies that deal with spatiotemporal prediction can have

diverse spatial and temporal scales. For instance, biweekly

predictions for different sub-counties of California [32],

daily prediction for Mexico border region [21], 74 cities in

china [25], Montreal city [34], and Mexico city [35], hourly

prediction for [22, 26, 36, 42], and even a real-time pre-

diction in [30].

5. AQMs Recommendation Based on Inputs

The purpose of air quality modeling is not only getting the

most accurate prediction/forecasting results of air pollution

but also detecting the main contributors to the air quality.

There are some techniques of AQM studying the cause-

and-effect aspect between air pollution and environment,

helping to draw inferences about the air pollution prime

causes. The two cause-and-effect models we encountered

(which give an explanation of the existing effects by

finding the causes) are LUR and random forests, which

provide the access to the most significant contributors on

air quality. In this section, we recommend the AQM to

adopt following the available inputs, in other words, the

possible techniques to employ depending on the available

variables in the dataset.

5.1. Recommendations for Building AQMs

Based on several works on air quality modeling, we build a

set of recommendations that help when developing an

AQM, to choose suitable inputs for a certain method and

vice versa.

We recommend using traffic indicators with LUR along

with pollutants’ concentrations, due to the good perfor-

mance it shows in various studies. For LUR models, in

most cases the traffic-related predictors are the most

influencing input data among the given variables, in addi-

tion to the land-use variable-related information [39]. In

the case of Ross et al.’s study [16], only the traffic infor-

mation accounts for over 54% of the variation. Besides,

Lee et al. find that the length of major roads, urban green

areas, semi-natural, and forested areas are the most sig-

nificant predictors [18]. Even when using three different

models of LUR as in [15], where the inputs period’s

measurements are different and the used variables too (a

model with 28 counties for the period of (1999–2001), the

second for the same period but only for 9 counties, and the
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last one for 2000 winter for 28 counties), traffic explains

the greatest part of variance (37–44%) in all the models,

followed by the population density indicator. Moreover,

when predicting air pollution in Los Angeles [17], Su et al.

use several variables as inputs of the LUR model, and since

the studied area is near roadway, evidently the impact of

local traffic is the most significant one, ignoring all the

remaining contributors. Taking the seasonal criteria into

consideration, traffic is identified to be the most significant

feature in summer and population density in winter for

NO2 also [18]. In addition, Moore et al. prove that traffic

volume is one of the top affecting factors along with

industrial and government areas [46]. Zhai et al. report that

traffic is still the stronger factor along with land-use vari-

ables and compared to the population distribution and

distance to the coast, and this is due to the great urban-

ization and intensive road traffic in Houston, USA [19].

Random forest is a good choice for predicting air quality

when having urban sensing data, such as point of interests

(POI), surrogate data from public map providers, and other

relevant information as discussed in [26]. Another case

when to use this technique is with land-use indicators,

Brokamp et al. take land-use indicators as predictors into

random forests. Random forest on air quality modeling

could be inferred with amazingly high accuracy from these

datasets [27].

The social media data can provide useful information for

estimating air quality since citizens always like to express

their opinions about air pollution in their city through

social media. Machine learning is recommended in this

case, for example gradient tree boosting (GTB) [23] that

solves classification and regression problems. The benefit

of social media data is that they help to get the air pollution

level at unmonitored locations especially in large cities as

in the work of [64], which all utilize machine learning to

measure the air pollution.

Fontes et al. do not include in [33] predictors like

meteorological data, traffic information, distance to the

ocean, and industrial emissions, the only available inputs

they have are the pollutants concentrations. In this situa-

tion, kriging and IDW techniques can estimate the air

pollutants by interpolating the measurements from the

known monitoring stations. So, even in the situation where

we have only pollutants’ concentrations, the air pollution

prediction is still possible by the mean of kriging and IDW

methods. Other works prove the same thing and were able

to perform air pollution estimation with achieving good

results [65–68].

Satellite remote sensing data can predict the air quality

index; hence, in [42] Guo et al. are able to give reasonably

good results by performing regression algorithms using

satellite data. This type of data covers the limitation of

ground-level monitoring in spatial coverage and resolution

and gives promising results when performed by regression

models [69–71].

PM2.5 and NOx are often selected for studying air

quality (the most examined pollutants in the reviewed

articles), because PM2.5 is one of the most dangerous

pollutants on the human health and environment and NOx

is a good tracer of traffic-related pollution. We advise to

use machine-learning-based AQMs for analyzing PM2.5

and PM10, while LUR (e.g., [19, 39, 40]) and hybrid

models (e.g., [28, 31, 32]) are usually used to model PM2.5

and NOx concentrations. To deal with traffic-related pol-

lutants such as gases of CO2 [72] and NOx [47] and par-

ticles such as particle-bound polycyclic aromatic

hydrocarbons (PB-PAH), particle number count (PNC)

[47], and UFP (ultrafine particles) [73], it is preferable to

utilize mathematical models to predict these pollutants’

concentrations in roads.

6. Case study

In this section, we present a real case study of PM10 esti-

mation in Northern France region. Based on the given

recommendations in Sect. 5, we adopt IDW, kriging, and

nearest neighbor since we only have the pollution data and

compare their performance estimating PM10

concentrations.

6.1. Study area and data

The study area is North France region which has 6 million

inhabitants and a population density of 189 inhabitants/

km2, on January 1, 2014. It is the third most populous

region in France and the second most densely populated

region in metropolitan France, after Ile-de-France. Cover-

ing an area of 32,000 km2, that represents 5.7% of the

surface area of metropolitan France, the North France

region is bordered on the North by the North Sea for a

distance of 45 km and on the West by the Channel for a

distance of 120 km. The region is exposed to a temperate,

oceanic climate. It has cool, wet winters, and mild sum-

mers. It gathers many industrial and agricultural activities,

fishing ports, passenger transport, and significant roads and

sea traffic. It is located in the center of northern Europe and

the Paris–Brussels–London triangle [74].

The inputs data are PM10 concentrations and the coor-

dinates of the 12 sites that provide the PM10 measurement

(blue dots in Fig. 1). The PM10 observations are measured

every 15 minutes from January 1, 2013, to December 31,

2013. These measurements were provided by ATMO

Hauts-de-France [75] and are not available online. The 12

sites were classified in a previous thesis to three categories

[76], following their position characteristics as:
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• Continental stations representing the stations localized

in the urban area which are: Campagne-lès-Boulonnais

(RU1), Saint-Omer (SO1), Béthune Stade (BE2),

Armentières (MO1), Lille Fives (MC5), and Valenci-

ennes Acacias (VA1).

• Coastal stations far from the industry zone we have in

Dunkerque city which are: Calais Berthelot (CA8),

Calais Parmentier (CA9), and Malo-les-Bains (DK4).

• Coastal stations near the industries of Dunkerque city

represented by Gravelines PC-Drire (DKG), Mardyck

(DKC), and Saint-Pol-sur-Mer (DK7).

Due to the malfunctions occurred in the measuring

sensors, the original PM10 observations contain some out-

liers (values that are bigger than the possible actual values

of PM10 concentrations) and negative values. Therefore,

we did some data preprocessing to remove the outliers and

negative values from the inputs. To assess the performance

of the three methods in predicting PM10 concentrations

over the whole presented region, we computed for each

RMSE and R2 by LOOCV (explained in Sect. 4).

6.2. Results and discussion

Table 3 presents the RMSE and R2 results of the three

methods. We observe that IDW gives the smallest RMSE

of 9.45 lg/m3 and the highest R2 of 67%, followed by

kriging and nearest neighbor. However, there is no big

difference between IDW and kriging, but a strong gap

compared to nearest neighbor, even if this latter takes in

account in its estimation process just the nearest site or the

average of the surrounding sites, while the others consider

all the sites’ information. This is because the nearest

neighbor does not consider any spatial variance and the

number of observed sites is limited and they are far from

each other. Thus, according to the discussion in the

‘‘Dataset analysis’’ section (Sect. 3), when having small

number of monitoring sites, which are not equally dis-

tributed over the space, advanced (e.g., kriging) and simple

techniques (nearest neighbor) lead to comparable results.

Also, the study region is exposed to industrial emission

sources (in Dunkirk city) plus meteorological phenomena

(at the coastal part), which makes it more difficult for these

methods to estimate the PM10 concentrations correctly.

7. Discussion and Conclusion

Air pollution problems could be alleviated by building

urban parks that have a remarkable impact on reducing air

pollutants [77]. However, setting up of trees and urban

parks in dense cities is constrained by the size and location,

Fig. 1 The positions of measured PM10 by 12 stations in North France region
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like for large dense, polluted cities a big relative urban park

is needed. Lam et al. suggest a possible way of improving

the urban environment, by cleaning the air and reducing the

noise with a good design and arrangement of green spaces

before their establishment [41]. Liu et al. conduct a case

study where they addressed the outcome of green space

changes on air pollution and microclimates, via structural

equation modeling. The authors indicate that the changing

pattern of green space areas has a great influence in

diminishing air pollution, making rainfall patterns smaller

and cooling temperatures [78]. In addition, the project of

[79] helps people who aim at studying air pollution or

mitigating the human impact on the planet based on AoT

(Array of Things), by giving a detailed explanation of how

the Internet of Things (IoT) could serve as an instrument

for research and development across many disciplines,

including air pollution.

However, without knowing the current state of air pol-

lution, we would not know how to act toward poor air

quality. Therefore, air quality modeling becomes a neces-

sity for air quality analysis. AQMs have been applied

successfully for studying and analyzing air quality as well

as its contributions. The models could be developed based

on various possible techniques and dataset. Although many

limitations would affect the model’s performances (e.g.,

lack or low quality of datasets), there are some alternatives

and efficient ways to build a more accurate model (e.g.,

surrogate variables or hybridizing techniques). Since there

exist various possible options for building AQMs, this

review could serve as a first manual for selecting datasets

and techniques, which covers the essential elements of

AQMs: existing techniques, dataset types, and validation

methods, with emphasizing the limitations and strengths of

AQMs. Modeling air quality could be carried out via a

multitude of available methods but going back to the pur-

pose of creating an AQM helps and determines the tech-

niques to utilize. Through this paper, we present a sort of

guideline to anyone interested in elaborating an AQM by

detailing every element of this latter.
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d’Opale of Dunkerque, France. We would like to thank Atmo Hauts-

de-France for providing us the measurements used in the study case.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

[1] M. Kampa and E. Castanas, Human health effects of air pollu-

tion. Environ. Pollut. 151(2) (2008) 362-367.

[2] B. Karimi and S Samadi, Mortality and hospitalizations due to

cardiovascular and respiratory diseases associated with air pol-

lution in Iran: a systematic review and meta-analysis. Atmos.

Environ. 198 (2019) 438-447.

[3] N. Künzli, M. Jerrett, W.J. Mack, B. Beckerman, L. Labree, F.

Gillil, D. Thomas, J. Peters and H.N. Hodis, Ambient air pol-

lution and atherosclerosis in Los Angeles. Environ Health Per-

spect. 113 (2005) 201–206.

[4] D.E. Schraufnagel, J.R. Balmes, C.T. Cowl, S. De Matteis, S.H.

Jung, K. Mortimer and G.D. Thurston, Air pollution and non-

communicable diseases: a review by the Forum of International

Respiratory Societies’ Environmental Committee, Part 2: air

pollution and organ systems. Chest, 155(2) (2019) 417-426.

[5] H. Chen, J. Kwong, R. Copes, K. Tu, A. van Donkelaar, P.

Hystad, P. Villeneuve, R. Martin, B. Murray, B. Jessiman and A.

Kopp, Living near major roads and the incidence of dementia,

Parkinson’s disease and multiple sclerosis in Ontario, Canada:

population-based study. In ISEE conference abstracts (2016).

[6] J.G. Miller, J.S. Gillette, E.M. Manczak, K. Kircanski and I.H.

Gotlib, Fine particle air pollution and physiological reactivity to

social stress in adolescence: the moderating role of anxiety and

depression. Psychosom. Med. 81 (2019) 641-648.

[7] F. Vadillo-Ortega, A. Osornio-Vargas, M.A. Buxton, B.N.

Sánchez, L. Rojas-Bracho, M. Viveros-Alcaráz, M. Castillo-

Castrejón, J. Beltrán-Montoya, D.G. Brown and M.S. O’Neill,

Air pollution, inflammation and preterm birth: a potential

mechanistic link. Med. Hypotheses, 82(2) (2014) pp. 219-224.

[8] N. Hudda and S.A. Fruin, International airport impacts to air

quality: size and related properties of large increases in ultrafine

particle number concentrations. Environ. Sci. Technol. 50(7)

(2016) 3362-3370.

[9] P.H. Ryan and G.K. LeMasters, A review of land-use regression

models for characterizing intraurban air pollution exposure.

Inhalation Toxicol. 19(sup1) (2007) 127-133.

[10] G. Hoek, R. Beelen, K. De Hoogh, D. Vienneau, J. Gulliver, P.

Fischer and D Briggs, A review of land-use regression models to

assess spatial variation of outdoor air pollution. Atmos. Environ.

42(33) (2008) 7561-7578.

[11] Y. Zhang, M. Bocquet, V. Mallet, C. Seigneur and A. Baklanov,

Real-time air quality forecasting, part I: History, techniques, and

current status. Atmos. Environ. 60 (2012) 632-655.

[12] Y. Zhang, M. Bocquet, V. Mallet, C. Seigneur and A. Baklanov,

Real-time air quality forecasting, part II: State of the science,

current research needs, and future prospects. Atmos. Environ. 60
(2012) 656-676.

Table 3 Nearest neighbor, IDW, and kriging results in estimating 2013 PM10 of Northern France

Interpolation method RMSE lg/m3 R2

Nearest neighbor 11.88 0.49

IDW 9.45 0.67

Kriging 9.68 0.66

298 K. Karroum et al.

123



[13] D.J. Briggs, S. Collins, P. Elliott, P. Fischer, S. Kingham, E.

Lebret, K. Pryl, H. Van Reeuwijk, K. Smallbone and A. Van Der

Veen, Mapping urban air pollution using GIS: a regression-

based approach. Int. J. Geogr. Inf. Sci. 11(7) (1997) 699-718.

[14] S. Bertazzon, M. Johnson, K. Eccles and G.G. Kaplan,

Accounting for spatial effects in land use regression for urban air

pollution modeling. Spatial Spatio-Temporal Epidemiol. 14
(2015) 9-21.

[15] Z. Ross, M. Jerrett, K. Ito, B. Tempalski and G.D. Thurston, A

land use regression for predicting fine particulate matter con-

centrations in the New York City region. Atmospheric Environ.

41(11) (2007) 2255-2269.

[16] Z. Ross, P.B. English, R. Scalf, R. Gunier, S. Smorodinsky, S.

Wall and M. Jerrett, Nitrogen dioxide prediction in Southern

California using land use regression modeling: potential for

environmental health analyses. J. Exposure Sci. Environ. Epi-

demiol. 16(2) (2006) 106.

[17] J.G. Su, M. Jerrett, B. Beckerman, M. Wilhelm, J.K. Ghosh and

B. Ritz, Predicting traffic-related air pollution in Los Angeles

using a distance decay regression selection strategy. Environ.

Res. 109(6) (2009) 657-670.

[18] J.H. Lee, C.F. Wu, G. Hoek, K. de Hoogh, R. Beelen, B. Bru-

nekreef and C.C. Chan, Land use regression models for esti-

mating individual NOx and NO2 exposures in a metropolis with

a high density of traffic roads and population. Sci. Total Envi-

ron. 472 (2014) 1163-1171.

[19] L. Zhai, B. Zou, X. Fang, Y. Luo, N. Wan and S. Li, Land use

regression modeling of PM2. 5 concentrations at optimized

spatial scales. Atmosphere 8(1) (2016) 1.

[20] S. Basu, K. Kumbier, J.B. Brown and B Yu, Iterative random

forests to discover predictive and stable high-order interactions.

Proc. Natl. Acad. Sci. (2018) 201711236.

[21] J.B. Ordieres, E.P. Vergara, R.S. Capuz and R.E. Salazar, Neural

network prediction model for fine particulate matter (PM2. 5) on

the US–Mexico border in El Paso (Texas) and Ciudad Juárez
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