A Parallel Query Engine for
Interactive Spatiotemporal Analysis

Mihir Sathe
Dept. of Computer Science
Univ. of Southern California
msathe@usc.edu

Yao-Yi Chiang
Spatial Sciences Institute
Univ. of Southern California
yaoyic@usc.edu

ABSTRACT

Given the increasing popularity and availability of location
tracking devices, large quantities of spatiotemporal data are
available from many different sources. Quick interactive
analysis of such data is important in order to understand the
data, identify patterns, and eventually make a marketable
product. Since the data do not necessarily follow the rela-
tional model and may require flexible processing possibly us-
ing advanced machine learning techniques, spatial databases
or similar query tools do not make the best means for such
analysis. Moreover, the high complexity of geometric oper-
ations makes the quick interactive analysis very difficult. In
this paper, we present a highly flexible functional query en-
gine that 1) works with multiple schema types, 2) provides
fast response times by spatiotemporal indexing and paral-
lelization, 3) helps understand the data using visualizations
and 4) is highly extensible to easily add complex functional-
ity. To demonstrate its usefulness, we use our tool to solve
a real world problem of crime pattern analysis in Los Ange-
les County and compare the process with other well known
tools.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and
GIS

General Terms

Design, Performance, Experimentation, Human Factors, Al-
gorithms

Keywords

Spatiotemporal analysis, spatial join, parallelization, index-
ing, visualization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SIGSPATIAL ’ 14, Nov 04-07 2014, Dallas/Fort Worth, TX, USA

Copyright 2014 ACM 978-1-4503-3131-9/14/11...$15.00
http://dx.doi.org/10.1145/2666310.2666437.

429

Craig A. Knoblock
Information Sciences Institute

Univ. of Southern California
knoblock@isi.edu

Aaron Harris
Dept. of Mech. Engineering
Univ. of Southern California

arharris@usc.edu

Figure 1: User interface for our tool

1. INTRODUCTION

Finding patterns in spatiotemporal data is much like crim-
inal investigation. You collect, integrate, aggregate the data
and make some queries to find some leads. You further
drill down to make some educated guesses about possible
patterns and then you query further to test your hypothe-
ses. Fast response time queries are very important for such
tasks. The high complexity of most geometric operations
increases the response time of such queries. Another im-
portant requirement for such analysis is quick visualization
which ranges from map-plotting to visualizing non-spatial
quantities like aggregations and frequency distributions. More-

over, this analysis often needs advanced operations like anomaly

detection and clustering which are not strictly spatial or
temporal.

Through this paper, we present a unique system that pro-
vides efficient query processing through in-memory indexing
and parallelization. It also provides data visualization and
can be extended easily to add advanced functionality like
machine learning. Our tool is deployed as a web applica-
tion. Figure 1 shows the User Interface (UI) for our tool.
The Ul is divided into three different panels: the top left
panel to write queries, the right panel for visualizations and
bottom panel for tabular, and the map view of the data.

In the following section, we provide a motivating exam-
ple of the analysis of statistical crime data in Los Angeles
County. Section 3 contains details about the query model
and capabilities of our system followed by a description of

the architecture in section 4. In section 5, we demonstrate
the use of our tool to solve the problem described in sec-
tion 2. We then evaluate our system in solving the given
problem as compared to other well-known tools. Finally, we
describe the related work and conclude with a discussion of
our contribution and future scope of the project.

2. MOTIVATING EXAMPLE

Strategic crime analysis is the study of crime informa-
tion integrated with sociodemographic and spatial factors
to determine long term “patterns” of activity [2]. We ob-
tained data about a total 148,638 crimes in Los Angeles
(LA) County since October 1% 2013 from the LA County
Sheriff’s Department' and various city level police depart-
ments?. Most crimes include latitude and longitude, date
and time of occurrence, date and time of report and cat-
egory of the crime (provided by individual agencies). We
also have data about the geographical borders of cities in
the county. We will analyze the crime patterns in the cities
of Compton and West Hollywood. Figure 2 shows the heat
maps of the crimes in those cities. Red spots indicate the
highest concentration of the crimes.

As a motivating example, we find the types of crimes
that frequently occur spatiotemporally together. Since these
crimes are more likely to be related to the same entity (e.g.
person, gang, or riot), this analysis helps us profile the be-
havior of such an entity and hence can give better insight to
law enforcement agencies. For example, if we find that drunk
driving and assaults occur together frequently in a certain
city, strict enforcement of driving laws near the places that
serve alcohol will help reduce the number of assaults as well.

The first part of this problem involves identifying spa-
tiotemporally co-occuring crimes followed by analysis of the
association rules between these categories. We demonstrate
the solution of this problem using our tool and present the
results in Section 5. In Section 6, we compare the solution of
this problem with our tool against solutions with well known
tools.

3. QUERY MODEL

We make queries easy to read and write by using higher or-
der functions. These functions take stateless ‘example’ func-
tions as parameters and apply them on an entire dataset.
This makes queries concise and parallelization-ready. We
allow users to write queries in JavaScript, CoffeeScript or a
combination of both.

3.1 Spatiotemporal Operations

Our tool supports all common spatiotemporal operations
like joins and aggregations. More complex and domain-
specific functionality can be added to this tool as an ex-
tension. All the operations take place over or between data
collections. A collection here is an ordered list of objects
where all objects represent similar entities such as a crime
or a city. The objects inside the same collections can have
different sets of properties or schemas.

All the join queries between two collections can be written
in the following format:

<collection 1> . <operator> (<collection 2>,
<label>, <selector>)

"http://shq.lasdnews.net /CrimeStats/LASDCrimeInfo.html
Zhttp://www.crimemapping.com/

430

Figure 2: Crime heatmaps in the cities of Compton
(above) and West Hollywood (below)

//Extension file HELLO.ext
(function() {

return {

sayHello: function() { return "Hello"; }

}
HO;
//Use in the script
var hello = #IMPORT HELLO
outtext (hello.sayHello()) // will print Hello

Figure 3: Procedure to create a simple extension

If an object from Collection2 satisfies the criteria for
join with an object in Collectionl, part of the object of
Collection2 returned by the selector function is added to
the given object of Collectionl under the key specified by
parameter label.

We support all common spatial operators like contains,
covers, intersects and temporal operators like within, to-
gether and around. All operator inverses are supported as
well. In figure 6, line 6 shows an example of join with the
containedBy operator.

3.2 Extensions

Users can write their own extensions to add any desired
functionality to the tool, allowing them to use this tool as an
integrated environment for analysis. Moreover any existing
algorithm implementation in JavaScript or CoffeeScript can
be imported as an extension with little to no modification.
Figure 3 shows the procedure to create and use a simple
extension.

4. ARCHITECTURE

Users can import their data from relational databases,
CSV files, GeoJSON files or MongoDB collections. All data
is converted to the spatiotemporal GeoJSON format and
stored in in-memory data store. Data can also be exported
to the same sources.

Users write queries in a browser-based code editor. When
a user runs a script, ther code is sent to a JavaScript sand-
box on the server that contains an in-memory data store

y

CLIENT SERVER
CODE S i ——
—_—
Rich Code ———— [= =
: KEEP Mongo
Editor ALIVE PostGIS Csv GeoJSON 0B
Correaseript PEEP GEOJSON ORM GeoJSON Importer
Int t
SR KEEP IN-MEMORY GeoJSON DB
ALIVE
Spatiotemporal Indexin,
Serve:r PEEP P p 8
Interactions Query API
PE—
KEEP Y
Output Handler ALIVE Query Engine
‘ Text . PEEP Indexing Join Aggregation Oct)::r
PE—
RESPONSE
‘ Map Unit Spatiotemporal Functions
‘ Table ﬂ
‘ VTR TR NodelS Sandbox

Figure 4: Architecture and request-response model

Figure 5: Workflow at the server side

and has full access to the query model described previously.
Code from all imported extensions is also added to the sand-
box. Asynchronous operations keep the clients waiting using
KEEP ALIVE signal. In this case, a client keeps on sending
PEEP signals until the response is received. Figure 4 shows
the client-server interaction and overall architecture.

4.1 Parallel Processing Infrastructure

The main challenge for our parallelization is to put all the
pieces of the output together correctly once all processes are
done executing queries. The execution pipeline consists of a
processing unit that fetches one instruction at a time from
the execution queue, decides what collections to split and
sends it to the processes to execute. Every query or job
has a unique job identifier (ID) that helps identify the re-
sult. Once a process is done executing its part of the job, it
passes on the results to the result unit which keeps track of
the number of expected process outputs and number of out-
puts received. Once all the outputs are received, it updates
the in-memory store with the new output (if required) and
notifies the processing unit of the completion by giving it a
callback. The processing unit will look for the next state-
ment in the execution queue for the same job and proceed
in the same way. If there are no more statements to be ex-
ecuted, it will end the processing and the server will send
the response with all the results upon next request by the
browser. Figure 5 shows the server side workflow including
the parallel processing.

431

Association Rule Support

Assault, Aggravated Assault, Vehicle/Boat- | 23.86%
ing Laws

Theft/Larceny, Vehicle break-in/Theft, As- | 22.13%
sault

Assault, Grand Theft Auto, Motor Vehicle | 20.61%
Theft

Association Rule Support

Vehicle/Boating Laws,
aggravated Assault

Narcotics, Non- | 29.91%

Drunk/Alcohol/Drugs, Theft/Larceny, Vehi- | 26.49%
cle/Boating Laws

Vehicle/Boating Laws, Aggravated Assault, | 22.22%

Non-aggravated Assault

Table 1: Association rules for spatiotemporally associ-
ated crimes from Compton (above) and West Hollywood
(below) with their support

4.2 Indexing

Indexing is the heart of efficient spatiotemporal opera-
tions. We provide existing in-memory implementations of
R-Tree[4] for the spatial indexing and Interval-Tree[3] for
temporal indexing of the objects. Indices are created on
all the spatial and temporal collections upon their creation
unless otherwise specified.

S. PROBLEM SOLVING

As mentioned before, we have data about crimes and ge-
ographic boundaries of cities in the LA County. Given this
dataset, we need to find the types of crimes that occur to-
gether. After placing crimes inside the given cities using a
join, we find 7,289 cases in Compton and 2,839 cases in West
Hollywood.

The next step is to find the co-occurring crimes. For this,
we progressively search a specified number of meters around
every crime to find crimes that occur within a specified num-
ber of hours after the previous crime. We then run the same
function recursively on every crime selected by the above
procedure until we no longer find any crimes nearby. We
found 461 such series from Compton and 117 series from
West Hollywood.

Once we find all such sets from our sample space, the next
step is to find the types of crime that occur together most
frequently in a set. For this, we use the apriori algorithm
[5]. The basic idea of apriori is that any association can
not be stronger than the strength of its weakest subset. We
provide apriori algorithm as an extension to our tool. Ta-
ble 1 shows the most commonly associated crime types in
spatiotemporally nearby crimes. We have included the top 3
association rules with highest support for both cities. Sup-
port indicates the frequency with which these rules occur in
the population.

Figure 6 shows code for solving this problem. Notice the
very compact instructions for solving a complex problem.

6. EVALUATION

We do performance analysis of our tool against well known
tools for solving the problem from Section 2 in terms of 1]
the spatial join and 2] the recursive pattern discovery.

var apriori = #IMPORT APRIORI

#coffee#

searchNear = (point, meters, hours)->
return [] if point.seen
point.seen = 1
crimes.containedBy(point.buffer(meters), ’sp’, (x)->1)
.filter ((x)-> x.properties.sp)
.within(point.temp_env(hours, 1), ’time’, (x)->1)
.filter((x)-> x.properties.time)

series = (point, meters, hours, _series)->
nearby = searchNear point, meters, hours
return _series if nearby.length ==
nearby.forEach (near)->
series near, meters, hours, _series.push(near)

apriori.init (crimes.map (crime)-> series(crime, 100,
48)), 15
outtext apriori.run()

Figure 6: Code for solving problem from section 2

Runtime Comparison of City X Crime
100000
- 90000 87200
T 80000
g 70000
£ 60000
E 50000
& 40000
£ 30000 -
5 20000 - 15060
10000 4207 4755 89T
P . N s =
Brute Force Brute force PostGIS Our Tool Our Tool
with MBR (Single (Parallel: 5
Thread) threads)

Figure 7: Performance analysis of various tools and
methods of execution for spatial join between collection
‘crime’ and ‘city’

For the purpose of evaluation, we take the spatial join
between all cities and crimes. Collection ‘city’ has 250 poly-
gons and collection ‘crime’ has 148,638 points. We compare
the runtime for the join using a brute force approach (unin-
dexed join), brute force but filtered by minimum bounding
rectangle (MBR) approach, indexed join with PostGIS, sin-
gle threaded indexed join with our tool, and finally parallel
indexed join with our tool. Figure 7 shows the run times for
the join. The parallel index join clearly outperforms every-
thing else.

In this section, we compare the performance of our tool

with the R language for running the algorithm for co-occurrence.

Note that this is fairly complex since it potentially issues n?

contains operations (over operations in R) during its run-
time. Our tool outperforms R for both cities (Figure 6)
mainly because of the indexing, which speeds up the large
number of contains operations and brings down the runtime
significantly.

7. RELATED WORK AND CONCLUSION

Similar tools include GIS systems, spatial databases and
spatial extensions of some other analysis tools. Our tool is
not designed to do everything that these tools can do but
to outperform these tools in terms of ease, flexibility and
efficiency in ad-hoc spatiotemporal analysis.

432

Runtime Comparison for Series Extraction
35000 32601

30000

25000

20000 -

& Our Tool

15000 -

Milliseconds

ER
10000

5000 -

Compton

West Hollywood

Cities

Figure 8: Performance analysis of our tool against R in
running the algorithm to extract a series of spatiotem-
porally nearby crimes

We use the visual and interactive approach of GIS while
giving users added flexibility through a programming model
like spatial R? does. We also optimize our tool to perform
efficient joins and aggregations like spatial databases. Un-
like our tool, most spatial tools do not have an out of the
box support for temporal data. There are other tools that
attempt the map-reduce model for spatial operations such
as Hadoop GIS[1]. However, these are designed for a much
higher scale of data and are not particularly interactive.

We present a novel tool that helps make quick interac-
tive spatiotemporal queries on the data in many different
formats. It is a great tool to perform quick interactive anal-
ysis for pattern discovery. It provides a powerful operation
set, wide range of visualizations, and fast processing with
parallel execution. It outperforms other well known tools
in solving fairly complex and ad-hoc problems with limited
amount of data.

In the future, we would like to scale up to multiple ma-
chines. We would also like to explore in-memory caching
systems and add support for raster data.

References

[1] Ablimit Aji et al. “Hadoop GIS: a high performance spa-
tial data warehousing system over mapreduce”. In: Pro-
ceedings of the VLDB Endowment 6.11 (2013), pp. 1009
1020.

[2] Rachel Boba. Introductory Guide to Crime Analysis and
Mapping. United States: COPS, 2001.

[3] TH Cormen et al. Introduction to Algorithms MIT Press.
2003.

[4] Antonin Guttman. R-trees: a dynamic index structure
for spatial searching. Vol. 14. 2. ACM, 1984.

[5] Yanbin Ye and Chia-Chu Chiang. “A Parallel Apri-
ori Algorithm for Frequent Itemsets Mining”. In: Soft-
ware Engineering Research, Management and Applica-
tions, 2006. Fourth International Conference on. 2006,
pp. 87-94. DOI: 10.1109/SERA.2006. 6.

3http://cran.r-project.org/web/views/Spatial. html.

