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ABSTRACT Matching spatial entities (e.g., polygonal residential areas) from sources of significantly
different map scales is challenging. The reason is that the same entities in two map scales have significant
variations in their positions, structure shapes and numbers, and topological relationships. Traditional
matching methods based on minimum boundary rectangles (MBRs) or buffers usually lead to missed
matches or mismatching. Furthermore, most of the previous approaches on entity similarity calculation
are designed for datasets with specified map scales, which cannot directly apply to another set of dataset
with a different scale. In this paper, we present a general approach using the Voronoi diagram for spatial
entity matching on multi-scale datasets. Our approach first employs an efficient algorithm to construct the
Voronoi diagram from the small-scale dataset. Next, the approach traverses each Voronoi polygon to find
the corresponding large-scale features as the matching candidates (for each small-scale feature). Using the
Voronoi diagram for identifying matching candidates does not require a manually determined search space
(in contrast to the buffer-based approach). Also, our algorithm effectively uses the Voronoi diagram to prune
the number of matching candidates even when the sources for matching contain large inconsistent position
deviations. Finally, our approach utilizes three similarity indexes, namely, the convex hull shape similarity,
convex hull area similarity, and overlapping area ratio to confirm the final matching results. We conducted
experiments on two sets of datasets of two cities in China. The scales of the tested datasets were 1:10
000 and 1:50 000 and 1:1000 and 1:10 000. We compared our Voronoi-based method to both the MBR and
buffer-based methods. The experiments showed that our method outperformed both the previous methods
in generality and quality. Specifically, for the datasets where the inconsistent position deviations were large
(i.e., the datasets of 1:1000 and 1:10 000 scales), the average F-measure of our results were 12.46%, 20.8%,
and 64.45% higher than the MBR-based, 6-m buffer-based, and 3-m buffer-based methods, respectively.

INDEX TERMS Shape similarity, entity matching, Voronoi diagram, multi-scale, data conflation.

I. INTRODUCTION
Geographic data from different sources have their respective
data qualities, and their geographic features have varying
geometric shapes, topological structures, geometry accuracy,
details of attributes, coding schemes, semantic representa-
tions, and spatial relationships [1]. A generate strategy for
integrating multi-source geographic data is to adopt map
conflation techniques to combine or update the geometry
and attributes of the same entities from different sources [2].

Specifically, entity matching is a key technology that uses a
series of similarity indexes to identify the features in multi-
source, multi-scale, or multi-temporal map data that represent
the same geographic phenomenon [3]–[5]. The majority of
theories and methods of entity matching originated from a
map conflation project of the United States Census Bureau
between 1983 to 1985 [6]. After thirty years of develop-
ment, researchers have achieved significant progress and
plenty of research results. It includes a variety of similarity
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indexes of spatial entities [2], [7]–[10] and matching strate-
gies for datasets with the same or multiple scales [11]–[15].
As well as matching accuracy [9], [15], [16]. Nevertheless,
there still exists challenges to implement a generic matching
method of polygonal residential area datasets with different
scales.

First, the existing methods such as buffers or minimum
bounding rectangles (MBR) based approaches for comput-
ing matching candidates have poor adaptability because of
the uncertainties in producing multi-scale spatial data and
changes in the ground truth. Figure 1 shows examples of
multi-scale polygonal residential areas covering the same
area where geographic features significantly vary in geomet-
ric structure and shape, topology, the number of geometries,
spatial position, size, etc. In Figure 1, the red wireframes rep-
resent geographic features of a small-scale source (1: 10,000),
the yellow areas represent features of a large-scale source (1:
1,000), the hatched areas represent user-specified buffers, and
the green lines represent the MBRs. For matching entities
from the two datasets, the user manually sets a buffer radius
according to the map scales for computing the matching can-
didates. A small buffer size can lead to a missed match. For
example, in Fig. 1(a), the large-scale features 715 and 716
(fL715 and fL716) are not entirely covered in the six-meter
buffer so they could be discarded during the matching pro-
cess. If a large buffer size is used, undesired features could be
included in the matching process (e.g., fL1339 and fL1361 in
Fig. 1 (b)). Acquiring matching candidates based on MBRs
can also result in missed matches if the positional variation is
significant. In Fig. 1(c), the small-scale fS62 matches with all
large-scale features in the figure, but the MBR of fS62 only
covers a fraction of the features (e.g., fL1252 and fL1242 do
not intersect with the MBR).

Second, many existing similarity indexes (e.g., [17]–[19])
do not handle multi-scale polygonal residential areas match-
ing. The reason is that the existing similarity indexes are sen-
sitive to the positional uncertainties of the matching datasets
(especially for trans-scale, for which the denominator of the
small scale is five times more than that of the large scale). For
instance, the tangent space-based shape similarity proposed
in [19] depends on a manually specified buffer for identifying
matching points in two match candidates. Figure 1(d) shows
that a six-meter buffer cannot help to find the corresponding
point P’ from P (i.e., fS122 fails to match fL907). Also,
the similarity indexes based on feature area ratio are usually
used to match datasets with the same or similar map scales
wheremost of the entity matching is a one-to-one relationship
(e.g., [20]). When the difference in map scales between the
matching datasets is large, the feature representations (e.g.,
shapes and area sizes) could vary significantly, which is hard
for an area-ratio based approach to handle. For instance, a
universal threshold for the area ratio cannot handle all the
matching cases in Figure 1(e).

In this paper, we present a Voronoi diagram-based
matching algorithm using geometric similarity indexes. Our
matching algorithm handles geographical datasets without

FIGURE 1. Examples of the buffer and MBR based entity matching:
(a) Acquiring matching candidates using a small buffer size, (b) Acquiring
matching candidates using a large buffer size, (c) Acquiring matching
candidates based on MBRs, (d) Examples of identifying matching points
using a six-meter buffer and (e) The same entities from different map
scales vary significantly.

attributes or have significant attribute differences (e.g.,
the difference in schemas, naming, or coding conven-
tions). Residential area Matching Method Based on Voronoi
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diagram, with robust, adaptive similarity indexes and effi-
cient matching strategies (hereafter the matching method is
termed RMMBV). Using the Voronoi diagram, RMMBV
can efficiently prune the matching space without manu-
ally setting the distance thresholds (e.g., the buffer size)
while limiting the number of missed matches even when
the two sources have significant or inconsistent position
deviations.

RMMBV focuses on matching multi-scale (trans-scale)
polygonal residential areas and aims to enhance the matching
quality and generality from the previous work. The first
step of RMMBV is an efficient algorithm for constructing
the Voronoi diagram for identifying a set of matching can-
didates in the large-scale dataset for each small-scale fea-
ture. This step does not require manually determined search
space (i.e., a distance threshold). Next, RMMBV utilizes a
feature combination strategy based on a generalized nearest
distance between a matching candidate and the target feature
to identify one-to-one and one-to-many matches. The feature
combination strategy employs adaptive similarity indexes,
which are robust to uncertainties in the data sources and
handle one-to-many matches in multi-scale residential area
datasets.

The remainder of this paper is organized as follows.
Section II presents the related work. Section III explains our
RMMBV method. Section IV describes our experiments and
results. Section V concludes our work and discusses future
directions.

II. RELATED WORK
In general, the process of entity matching involves two main
stages: identifying matching candidates and determining the
final one-to-one or one-to-many matches. For searching
matching candidates, most of the existing methods rely on
a manually specified buffer (e.g., [12], [15], [16], [20]) or the
MBR (e.g., [5], [14], [18], [21], [22]) to define a search
space. However, as discussed in Section 1, these methods are
not robust to handle multi-scale polygonal residential areas
with large or inconsistent positional offset. Huang and Jiang
[23] presented preliminary work using the Voronoi diagram
for entity matching in trans-scale polygonal residential areas.
Their work did not require a manually setting buffer or MBR,
but they did not provide a detailed algorithm and experi-
ment results. Yan and Wang [24] used a method based on
the Voronoi polygons for cartographic generalization. Their
algorithm for creating Voronoi polygons required lots of
inter-visibility computation. In contrast, this paper presents
a complete algorithm for finding matching candidates using
the Voronoi diagram for polygonal residential area dataset.
Our algorithm focuses on matching multi-scale (trans-scale)
polygonal datasets of the residential area. Our method of
creating the Voronoi diagram is based on interpolated points
in the area boundaries, and it does not require expensive inter-
visibility computation.

Once a set of matching candidates are identified, the next
step in entity matching is to compare the source feature to

be matched with its matching candidates to establish a one-
to-one or one-to-many match. Hao et al. [18] presented a
comparison method using similarity indexes based on all ver-
texes extracted from the matching candidates. Their method
cannot handle one-to-many matches due to the difficulty in
obtaining outline vertexes from the composite polygon of
the matching candidates. Fang et al. [26] used mathematical
morphology to describe and calculate similarities of indi-
vidual buildings at the aspects of shape, construction, and
interior extending direction. Their algorithm strengthened the
identification ability of similarity index, while it was difficult
to solve similarity calculation for the one-to-many case due
to the difficulty in obtaining the outline of several polygons.
Fan et al. [5] and Fu et al. [19] used a tangent-space-based
shape similarity index. This similarity index depended on
a predefined buffer to find pairs of matching vertexes for
similarity calculation. The algorithm does not work if the
predefined buffer fails to locate matching vertexes (e.g., when
the positional discrepancies are significant). Therefore, it is
difficult to be used for matching multi-scale polygonal res-
idential areas with positional uncertainties. Tong et al. [12]
determined the feature with maximum total probability as the
corresponding feature. In fact, their judgment is not neces-
sarily correct when spatial entities changed (e.g., fL1438 in
Fig. 1(e) has the maximum probability of matching fS65 than
other features in the small-scale dataset, yet it is not the
corresponding feature of fS65).

Zhao [21] handled one-to-many cases using convex hulls
to compare their similarity. This algorithm first divided the
convex-hull into many sectors, then calculated and compared
the similarities in the aspects of direction, distance, and area
for the counterpart sectors. The algorithm is inefficient and
time-consuming. Zhao et al. [25] proposed an algorithm for
multi-scale polygonal feature matching based on geometry
moments and overlay analysis. Their algorithm used over-
lapping area ratio for similarity calculation after the cen-
troids of the source and target features coincided and selected
the feature combination with maximum similarity value as
the matching feature combination. Their method is time-
consuming due to calculating candidates many times, and
realistically the matching features with the greatest similar-
ity value are not necessarily same entities, for instance, the
maximum similarity value is 0.5, it means the entities could
have changed, thus the related features cannot be confirmed
as identical entities. Huang and Jiang [23] used the Voronoi
diagram to address trans-scale residential area data match-
ing. Their method used the overlapping area ratio between
the target feature and its corresponding Voronoi polygon to
determinewhether theywere same entities. However, the sim-
ilarity index is so weak that it can result in mismatching.

In this paper, we strengthened the identification ability of
similarities by incorporating the information including the
shape of convex-hull, convex hull area, and overlapping area.
Ourmethod addresses the one-to-many correspondence using
the combination strategy based on the generalized nearest
distance.
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FIGURE 2. Matching workflow based on Voronoi diagram.

III. VORONOI DIAGRAMS BASED RESIDENTIAL AREAS
MATCHING METHOD
Fig. 2 shows the RMMBVworkflow formatchingmulti-scale
polygonal residential areas. In Fig. 2, ‘‘dataset A’’ stands for
the small-scale dataset or the source dataset, and ‘‘dataset B’’
represents the large-scale dataset or the target dataset. Herein
the small-scale (large-scale) dataset is the dataset with a rela-
tively smaller (larger) map scale of the two source datasets in
the matching process. The overall matching process includes
four stages explained in detail in the following subsections.

A. CREATE THE VORONOI DIAGRAM
RMMBV creates a Voronoi diagram from the small-scale
dataset and then uses the Voronoi polygons of individual
small-scale features to identify a set ofmatching candidates in
the large-scale datasets.We propose an efficient algorithm for
creating the Voronoi diagram from the small-scale residential
area dataset. The idea is as follows.

Given the small scale dataset A = {A1,A2,A3, . . . ,An}
where Ai is a feature and i = 1, 2, . . . , n (a total of
n features). The geometry of Ai is a polygon Pi =
{Pi0,Pi1,Pi2,Pi3, . . . ,Pim} where Pij is a vertex of Pi and
j = 1, 2, . . . ,m (a total of m vertexes). To create the
Voronoi diagram, RMMBV first inserts evenly distributed
points (interpolation points) on each of the polygon bound-
aries. RMMBVdetermines the number of interpolation points
based on the map scales. This ensures RMMBV to insert
only a small amount of points in the polygon boundary and
improve the efficiency for computing the Voronoi diagram.
If the map scale of dataset A is known, RMMBV inserts
k (see the formula (1)) points in the boundary of Pi at an
equal distance interval. In formula (1), MapScale(A) is the
denominator value of map scale of dataset A. MapScale(A)
is divided by 1,000 to represent the actual ground length
corresponding to 1 mm (millimeter) in a paper map. The term
1/10 represents the minimal proportion of 1 mm distance

FIGURE 3. The process of creating Voronoi diagrams for polygonal
residential areas: (a) Discrete points, (b) Voronoi polygons created by
discrete points and (c) The merged Voronoi polygons.

on a paper map that human eyes can distinguish (namely
human eye resolution) [27]. The term λ(≤ λ ≤ 10) is
the distance tolerance coefficient. Considering data error and
computation efficiency, here we use λ equal to 4. The function
Perimeter(Pi) represents the length of the perimeter ofPi. The
function Int [] is a function that returns the integer part of
the input value. If the map scale of dataset A is unknown,
RMMBV inserts a predefined k (we suggest k ≥ 4) points at
an equal distance interval on each side of Pi.

k = Int

[
Perimeter (Pi)

λ ∗
MapScale(A)

1000 ∗
1
10

]
(1)

Finally, RMMBV uses the inserted points and the vertexes
of every polygon (Fig. 3(a)) to construct the Voronoi diagram
(Fig. 3(b). For each polygonPi, RMMBVmerges the Voronoi
polygons overlapping Pi to obtain the final Voronoi polygons
of the polygonal residential areas (Fig. 3(c)).

B. DETERMINE MATCHING ENTITIES
Once we have the Voronoi polygons for each feature in
the small-scale datasets, RMMBV starts to find matching
candidates in the large-scale datasets for evaluating possi-
ble matches by enumerating the compositions of the match-
ing candidates. In this section, we describe three similarity
indexes and their rules for evaluating a match.

The shape similarity index of convex hulls. The size,
internal structure, and even the overall position of the features
that represent the same ground object could be different
greatly in two data sources, but the shape and size of their
convex hulls maintain a relatively high similarity. Therefore,
we use the shape similarity of the convex hulls as one of the
RMMBV similarity indexes. Given a small-scale feature Ai
and a set of composite features from the larger scale datasets.
RMMBV establishes the convex hulls for Ai and the compos-
ite polygon of the target featuresCAi, denoted byConvexHull
(Ai) and ConvexHull(CAi), respectively. Figure 4 shows the
convex hulls of the small-scale polygon and the large-scale
combination polygon.

When the edges of the convex hull are arranged clockwise,
the azimuth of each edge increases monotonically (starting
from the edge with the smallest azimuth). This property
guarantees that the shapes of the two convex hulls are similar
if each edge (or several edges with a similar azimuth) can find
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FIGURE 4. Convex hulls of polygon and group of polygons:
(a) ConvexHull(Ai), (b) ConVexHull(CAi) and (c) The overlay effect of
convex hulls.

one or a set of corresponding edgeswith a similar azimuth and
similar length. Our algorithm computes the shape similarity
of convex hulls based on the azimuth and length of each
edge of the two convex hulls. This approach does not require
inserting many points nor needs a buffer to find initial point
like the tangent-space-based algorithm (Fu and Shao 2010)
and the shape-descriptor-based algorithm (Hao et al. 2008).
RMMBVcomputes the shape similarity of convex hulls based
on the above idea as follows.

First, for each edge azimuth E of ConVexHull(Ai),
RMMBV finds azimuth set E ′Set of ConVexHull(CAi) where
the difference between the E and E ′ (E ′ indicates each
azimuth in E ′Set ) is smaller than an angle threshold TAngle.
The formula (2) shows the condition for matching the similar
azimuths.(∣∣E − E ′∣∣ ≤ TAngle) or (∣∣360− E + E ′∣∣ ≤ TAngle)

or (
∣∣360+ E − E ′∣∣ ≤ TAngle) (2)

where 360 is the maximum of azimuth. Using the 360 in
formula (2) aims to deal with the case that E (E ′) is near
360 and E ′(E) is near 0. The matching result E ′Set of E
may include zero to more azimuths. We build the matching
pair relationship for E and E ′Set . Processing each azimuth by
this way until azimuths of ConVexHull (Ai) are exhausted.
After that, our algorithm conducts backward matching for the
azimuths that are unmatched in azimuths ofConVexHull(CAi)
and builds the matching pair relationship for Eset and E ′.
Second, RMMBV conflates the matching pairs if there

is one same azimuth E(/E ′) of different matching pairs in
source azimuth data (/target azimuth data). Last the elements
in the conflating results and other matching results to be
separately written into array Alist[] (stores source azimuth
data) and Blist[] (stores target azimuth data). Supposing the
corresponding edge length sets of the source data and the

target data of an azimuth matching pair are Alen[i] and
Blen[i], the formula of calculating the shape similarity of
two convex hulls is (3), as shown at the bottom of this page.
In formula (3), simShape represents the shape similarity index
of convex hulls.Max() represents the maximum function and
Min() represents the minimum function. Perimeter() repre-
sents the function of obtaining the length of the perimeter of
a polygon. The parameter n represents the amount of the new
matching pairs. The parameter p represents the amount of the
elements inAlen[i]. The parameter q represents the amount of
the elements inBlen[i]. Amatched pair should have the shape
similarity index of convex hulls larger than a user defined
threshold.

The area similarity index of convex hull. Because the
convex hulls of matching features can maintain high size
similarity evenwhenmap scale is different, RMMBVuses the
areas of convex hulls to design a similarity index for matching
the same entities as follows. Assuming the two convex hulls
areConvexHull(Ai) andConvexHull(CAi), the calculation for-
mula for the area similarity index is as follows (4), shown at
the bottom of this page, where simConvexHullArea represents
the area similarity index of the convex hulls, the Min() is the
function of computing the minimum value, the Max() is the
function of computing the maximum value, the Area() is a
function of computing polygon area. A matched pair should
have the convex hull area similarity larger than a user defined
threshold.

Overlap area ratio of the target features. Matched fea-
tures should have a high degree of overlapping in their posi-
tions after positional rectification. In matching multi-scale
polygonal residential areas, the matching candidates should
have a high degree of overlapping with the convex hull of the
source feature after eliminating positional inconsistency of
the convex hulls. Therefore, we design the overlap area ratio.
Its calculation process as follows. First, computing the coor-
dinate difference between two centroids of ConvexHull (Ai)
and ConvexHull(CAi). Then moving CAi towards to centroid
of Ai according to the coordinate difference to eliminate
positional inconsistency. Here the translation result of CAi is
denoted as CAiT . Finally, the formula for calculating overlap
area ratio as follows.

simOverlapArea =
Area(CAiT ∩ ConvexHull(Ai))

Area(CAiT )
(5)

A matched pair should have overlap area ratio similarity
larger than a user defined threshold.

simShape =

n−1∑
i=0

Min(
p−1∑
j=0

Alen [i] [j] ,
q−1∑
j=0

Blen[i] [j])

Max(Perimeter(ConVexHull (Ai)),Perimeter(ConVexHull(CAi)))
(3)

simConvexHullArea =
Min(Area(ConvexHull(Ai)),Area(ConvexHull(CAi)))
Max(Area(ConvexHull(Ai)),Area(ConvexHull(CAi)))

(4)
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FIGURE 5. The process of the initial matching.

C. INITIAL MATCHING
RMMBV conducts entity matching after generating Voronoi
diagram for the small-scale dataset. To improve matching
efficiency and quality, we divide entity matching into two
stages called initial matching and combinational matching.

Assuming the features in dataset B that have at least 50%
overlapping area with the Voronoi polygon Vi of a source
feature Ai constitute a matching candidate set CAi. Initial
matching means matching the source feature Ai with CAi′

(CAi′ is the set of the features in CAi that have at least 50%
overlapping areawithAi) by calculating the similarity indexes
(section II B). If the calculation results meet the similarity
criteria, recording the matching result. Figure 5 shows the
features in CAi′ (highlighted in blue).

D. COMBINATIONAL MATCHING
Combinational matching aims to find the feature in
CAi"(CAi" = CAi − CAi

′

) belongs to the matching result
set of Ai so that RMMBV could improve matching precision.
The process of combinational matching as follows: each time
adding one feature Bi in CAi" to CAi

′

according to the gen-
eralized nearest distance (the next paragraph demonstrates
its definition by Figure 6). Bi is the feature with minimum
generalized nearest distance. Then matching Ai with the new
CAi

′

and calculating their three similarity indexes. If the
calculation results meet the similarity criteria, recording the
matching result. Executing the above steps until all features
inCAi" exhausted. Finally, RMMBVestablishes thematching
relationship of those features that meet similarity criteria in
the last matching.

Figure 6 demonstrates the definition of the generalized
nearest distance. The purpose of using the generalized nearest
distance is to keep the area of the new convex hull as small
as possible after combining one candidate feature so that
maintaining the convex-hull similarity of the matching pair.

As shown in Figure 6, first, we suppose Ai is a feature
of dataset A,B1,B2,B3, . . . ,Bn are the features of CAi" and
suppose Bj has m vertexes. RMMBV uses the vertexes of
Bj that are outside of Ai if Bj intersects with Ai to calculate

FIGURE 6. The generalized nearest distance.

FIGURE 7. The diagram of matching result after eliminating the
coordinate difference between centroids of two convex hulls.

the nearest distance DisV (k)(k = 1, 2, 3, . . . ,m) from each
vertex of Bj to Ai. Next, the maximum of the nearest distance
of Bj and Ai can be calculated and denoted by DisMaxV (j) =
Max(DisV (1), DisV (2), . . . ,DisV (m)), where Max() is the
maximum function. Finally, RMMBV can use formula (6) to
calculate the generalized nearest distance.

DisMinP = Min(DisMaxV (1),DisMaxV (2),DisMaxV (3),

. . . ,DisMaxV (n)) (6)

where DisMinP indicates the generalized nearest distance,
Min () is the minimum function.

After that, To guarantee the accuracy of matching result,
RMMBV needs further to validate the correctness of the
feature inmatching result after eliminating the coordinate dif-
ference between centroids of the two matched convex hulls.
As shown in Figure 7, in the matching result of RMMBV, Ai
matches with B1 trough B7 because they meet the similarity
criteria, visually Ai matches with B1, B2, B3, B4 and B7 (or
only B1, B2, B3, B4). To remove the features like B5, B6 and
make sure B7, we design the following strategy to address this
problem.

RMMBV determines the feature belongs to the correct
matching result according to the overlap area ratio of the
target feature after eliminating the coordinate difference
between centroids of the matched convex hulls. If the overlap
area ratio of the target feature is low to a certain extent,
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it is unsuitable for a correct candidate. Considering the tar-
get feature with a smaller area size has less impact on the
shape change of combination of candidates and vice versa,
for example, B7 has less impact on the shape change of
combination of candidates than B6. Based on our mapping
experiences, we design three levels of thresholds for the
overlap area ratio of the target feature based on area ratio k
of the target feature area to the source feature area. If k of
the target feature that interests with the source feature less
than or equal to 0.2%, we confirm the target feature is a
correct matching feature if its overlap area ratio is greater
than zero (threshold 1). If k of the target feature that interests
with the source feature greater than 0.2% and less than 5%,
we confirm the target feature is a correct matching feature if
its overlap area ratio is greater than 40% (threshold 2). If k of
the target feature that interests with the source feature greater
than or equal to 5%, we confirm the target feature is a correct
matching feature if its overlap area ratio is greater than 80%
(threshold 3). RMMBV removes the target feature that does
not interests with the source feature.

IV. EXPERIMENT AND RESULT ANALYSIS
This section first introduces two test datasets of residential
areas used in our experiment. Thenwe describe the evaluation
metrics for assessing the performance of RMMBV for entity
matching. Finally, we report and compare the entity matching
results from RMMBV and both the MBR and buffer-based
methods.

A. EXPERIMENTAL DATA
We tested two groups of polygonal residential areas of dif-
ferent scales to validate the feasibility and performance of
RMMBV. Fig. 8 shows the first group of datasets, which
include 1: 10,000 and 1: 50,000 polygonal residential areas
(named 1Res1W and 1Res5W, respectively) that represent
the same district of the Zhejiang Province, China (approxi-
mately 10.9 km2). 1Res5W is the source data (small scale),
which contains 174 features, and 1Res1W is the target data
(large scale), which contains 543 features. Wemanually iden-
tified 102 matching pairs in this group of datasets as the
ground truth. The second group of datasets (Fig. 9) include
1: 1,000 and 1: 10,000 polygonal residential areas (named
2Res1K and 2Res1W, respectively) covering a suburban dis-
trict of Beijing, China (approximately 0.98 km2). 2Res1W is
the source data (small scale), which contains 199 features,
and 2Res1K is the target data (larger scale), which contains
2,434 features. The number of manually identified matching
pairs in this group of datasets was 151. In general, through
observations of the two groups of datasets, the second group
of datasets have a larger positional inconsistency and more
aggressive generalization entity representations (in the small-
scale dataset) than the first group.

B. EXPERIMENTAL RESULT AND ANALYSIS
We implemented RMMBV in a program developed with
the Microsoft Visual Studio .Net C# and Esri ArcGIS

FIGURE 8. The experimental residential area data of map
scale1:10,000 and 1: 50,000.

FIGURE 9. The experimental residential area data of map
scale1:1,000 and 1: 10,000.

Engine 10.2. The experimental computer configuration envi-
ronment is of Windows 7 64-bit operating system, Intel
Core2 Duo CPU processor, and 4GB memory. In our
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TABLE 1. Similarity criteria for determining the same entities.

experiments, we designed twelve sets of similarity criteria
based on prior knowledge to test the robustness of RMMBV
(Table 1). In Table 2, TAngle is the azimuth similarity thresh-
old of convex hull edges, TShape is the shape similarity
threshold of the convex hull, TArea is the area similarity
threshold of the convex hull, and TOverlap is the threshold
of overlap area ratio.

We used Recall, Precision, and F-Measure to assess the
matching quality. The F-Measure is comprised of recall and
precision for an integral evaluation for the matching quality:

F −Measure =
2 ∗ Recall ∗ Precision
Recall + Precision

(7)

Where Recall equals to C /E , C represents the number of
correct matching pairs, E represents the number of actual
matching pairs (ground truth). And Precision equals to C /R,
R represents the number of matching pairs in matching
results.

We conducted experiments on data matching of our two
groups of experimental data based on three matching meth-
ods: RMMBV presented in this paper, the MBR-based
method, and the buffer-based method. For the buffer-based
method, we determined the buffer radius as follows. Accord-
ing to the principle that the survey error is not beyond the
triple value of standard deviation, here we replaced standard
deviation with the ground distance that corresponds to the
paper map distance 0.1 millimeters that human eye can distin-
guish. Therefore, the buffer radius of 1Res5W can be denoted
by 0.1∗3∗50 = 15, where 50 (meter) is ground distance
represented by 1 millimeter on the paper map. Likewise, we
calculated the buffer radius 3 meters for 2Res1W. Consider-
ing the great data differences of the second group of datasets,
we also designed another buffer with a radius of 6 meters
to investigate the matching quality. For both the MBR-based
method and the buffer-based method, we used theMBR (used
the spatial relation of ‘‘intersects’’) or the buffer (used the
spatial relation of ‘‘contains’’) for searching candidates while
still used our proposed similarity indexes to judge the same
entities. The matching result of the first group of datasets
shown in Table 2. Where PS value represents Parameter set
shown in Table 1, T is time in seconds,

TABLE 2. The matching result of 1Res5W and 1Res1W.

Fig. 10 shows the graphical representation of the
Recall (Fig. 10(a)), Precision (Fig. 10(b)), and F-Measure
(Fig. 10(c)) from the matching results at different similarity
criteria. RMMBV, the MBR-based method and buffer-based
method had the maximum F-Measure with the parameter set
11, respectively. All of the three methods achieved similar
results (i.e., their recalls were 95.57%, 93.47%, and 89.00%
respectively when the F-Measures were at the maximum),
which was because the first test datasets had small differences
in geometric position and morphological structure.

Table 3 shows the matching results of the second group
of experimental data. Where Buffer (6m) represents using a
buffer with a radius of 6 meters and Buffer (3m) represents
using a buffer with a radius of 3 meters.

Figure 11 shows the graphical representation of the
Recall (Fig. 11(a)), Precision (Fig. 11(b)), and F-Measure
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FIGURE 10. Matching results of 1Res5W and 1Res1W: (a) Comparison of
recalls of three matching methods, (b) Comparison of precisions of three
matching methods, (c) Comparison of F-measures of three matching
methods.

(Fig. 11(c)) from the matching results at different similarity
criteria. RMMBV had the maximum F-Measure with the
sixth parameter set, the MBR-based method had the maxi-
mum F-Measure with the 11th parameter set, the 6 meters
buffer-based had the maximum F-Measure with 7th param-
eter set, the 3 meters buffer-based had the maximum F-
Measure with 4th parameter set respectively. Figure 10 shows
RMMBV outperformed the other two methods when the
best set of parameters were used for individual methods
(i.e., the recalls were 74.17%, 68.21%, 51.66% (6 meters
buffer) and 9.27% (3 meters buffer) when F-Measures were
at the maximum). In addition, the average F-Measures of
RMMBV were 12.46%, 20.8% and 64.45% higher than the

TABLE 3. The matching result of 2Res1W and 2Res1K.

MBR-based, 6 meters buffer-based, 3 meters buffer-based
methods, respectively. This experiment also showed that the

4912 VOLUME 6, 2018



J. Wu et al.: Matching Algorithm Based on Voronoi Diagram

FIGURE 11. Matching results of 2Res1W and 2Res1W: (a) Comparison of
recalls of different matching methods, (b) Comparison of precisions of
different matching methods, (c) Comparison of F-measures of different
matching methods.

matching result can be affected greatly by the buffer size
when adopting the buffer-based method.

In summary, RMMBV outperformed the MBR and buffer-
based methods. The experiment shows that RMMBV has a
great advantage over the other twomethods when the position
difference was large (the second group of test datasets). The
reason is that when there were significant differences in the
spatial positions and (matching) feature numbers, the MBR-
based and buffer-based method could cause missed matches
while it has less impact on RMMBV. Regarding the matching
time, the MBR-based method required more computation
time because the larger number of matching candidates. For
instance, for matching the second group of data using the
12 sets of similarity criteria, the average processing time

FIGURE 12. Cases of matching error: (a) fS179 wrongly matched fL1706,
(b) fS60 wrongly matched the fL806, (c) Three target features were
missed and (d) One feature was missed.

of the RMMBV, MBR-based, 6 meters buffer-based and
3 meters buffer-based methods were 22.58, 25.75, 15.33, and
6 seconds. The buffer-based method required less time than
the other two methods because the buffer-based method only
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used a smaller of matching candidates (which lead to missed
matches).

The errors in thematching results of RMMBVweremainly
from two categories. The first type of error was caused by the
change of geographic objects. Fig. 12 (a) and Fig. 12 (b) show
an example in which entities in the same place from different
map scales have changed. When RMMBV adopted the 11th
parameter set, the initial matching algorithm of RMMBV
incorrectly matched fS179 with fL1706 because fS1706 was
a new geographic object near fS1465. For the same reason,
fS60 was incorrectly matched fL806 in the initial matching
because they met the thresholds of the 11th parameter set in
the initial matching. The second type of error was caused
by potential mapping errors or inconsistent data quality.
As shown in Fig. 12 (c), in the ground truth, fS10 should
match with all the highlighted large-scale features and the
features indicated by red arrow. Because the size difference
between fS10 and the combination of the target features was
large (probably from mapping errors), fS10 missed to match
three features using RMMBV (the features indicated by red
arrow). In Fig. 12 (d), compared to the manual matching
result, fS37 missed to match fL216. Without comparing fea-
ture attributes, it was not clear that the features in the red
circle were new features due to the change of geographic
objects or missed matches.

The matching quality depended on the selection of a good
set of similarity criteria. In practice, the user should test the
matching framework on a small sample set and compare
the matching results to the ground truth to determine the
best parameters. Through testing RMMBV using the two
groups of experimental datasets with different map scales and
positional differences, we found the matching results were
relatively good when using the 11th set of similarity criteria.
In the case of not knowing the ground truth of sample data,
we recommend the users to use the parameter set like the
11th set of similarity criteria for polygonal residential area
matching.

V. CONCLUSION AND FUTURE WORK
This paper presented a generic entity-matching framework
for multi-scale polygonal residential areas. The matching
framework is based on the Voronoi diagram and a novel
combination matching strategy with similarity calculation
models. In comparison to the traditional MBR-based and
buffer-based methods, our method can improve the matching
recall and precision, especially for multi-scale datasets with
inconsistent positional deviations from different sources. The
algorithm we designed can apply to matching multi-scale
(or trans-scale) polygonal residential area datasets, which
improves the generality of the existing matching methods.

We plan to test our approach onmore varieties of polygonal
residential area datasets with various map scales, improve
the computational efficiency of our algorithm, and further
explore the possibility of using the Voronoi diagram in multi-
scale linear road matching.
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