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Abstract—This paper presents an exact solution and a heuristic
solution to a UAV-assisted parcel delivery problem, in which UAVs
can only be operated in Visual-Line-Of-Sight (VLOS) areas. In
our proposed problem, we assume that trucks travel on road
networks, and UAVs move in Euclidean spaces and can launch
at any locations on roads. We first demonstrate the overview of
our exact solution that iterates all permutations of destinations
for an optimal delivery route. Given a specific delivery order,
an intuitive approach needs to check all possible locations on
roads in the VLOS areas and find a globally optimal location
for every destination if UAVs are used for delivery. To avoid
high computational cost of searching the optimal location at run-
time, we propose an advanced index-based alternative, which
computes optimal delivery routes in a pre-processing stage. Due
to the nature of NP-hard problems, we also propose a heuristic
approach that utilizes delivery groups for the proposed problem
of practical size. All proposed solutions are evaluated through
extensive experiments.

Index Terms—UAV, Visual-Line-Of-Sight, Parcel Delivery
Problem

I. INTRODUCTION

The Travelling Salesman Problem (TSP) finding an optimal

route for a salesman, who plans to travel to each of a list

of cities exactly once and return to the home city, has been

extensively studied and applied in the parcel delivery service

and other real applications [14] [8]. On the other hand,

Unmanned Aerial Vehicles (UAVs), or drones, are developed

for assisting traditional delivery vehicles (such as trucks)

since the delivery could be completed in a shorter time

period with lower maintenance cost by using UAVs in specific

circumstances. Many UAV-assisted delivery projects have been

initialized. For example, Prime Air is designed to deliver

packages to customers in 30 minutes or less at Amazon [3].

DHL will start a project for delivering medications and other

urgently needed goods to the North Sea island of Juist by DHL

parcelcopters [10]. The project Wing targets delivering aid to

isolated areas for disaster relief [9].

As UAVs are not limited by established infrastructure (e.g.,

roads), a new delivery model, a truck and a UAV, was proposed

Fig. 1. An example of TSP in a
Euclidean space. The line seg-
ments indicate a delivery route.

Fig. 2. An example of UAV-
assisted parcel delivery prob-
lem. The line segments indicate
the road network.

for parcel delivery [18]. In the model, every truck is equipped

with a UAV and all packages can be delivered by either of

the two. Fig. 1 and Fig. 2 display examples of TSP and the

UAV-assisted parcel delivery problem. The delivery route starts

at a distribution center h (indicated by a box), and eventually

returns to the distribution center after reaching five destinations

({d1, d2, d3, d4, d5} indicated by circles). The delivery truck

(indicated by the triangle) could stop at any locations on

the road. In the example of the UAV-assisted parcel delivery

problem in Fig. 2, the truck stops on road r and the UAV flies

to d4 for delivery.

The travelling salesman problem is a well-known NP-

hard problem in the field of combinatorial optimization [19],

and the new UAV-assisted parcel delivery problem is more

challenging. First of all, the fastest delivery route among

destinations is usually assumed to be computed in a pre-

processing stage in TSP. However, if packages could be

delivered by either the truck or the UAV, the truck can stop

at any places on the road and the UAV can be used for

delivery. So, the fastest route among locations where the truck

stops cannot be pre-determined, and may greatly vary case

by case. Second, only one search space (either a Euclidean

space or a road network) is usually considered in TSP, but the

UAV-assisted problem assumes that the truck travels on road
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networks while the UAV moves in Euclidean spaces. Thus,

the fastest delivery route may consist of paths in both search

spaces, which significantly increases the complexity of the

problem. Third, many variants of UAV-assisted problems have

been investigated [18] [11] [21]. Nevertheless, none of these

studies takes UAV regulations into account. For example, the

Federal Aviation Administration (FAA) does not allow UAVs

to be operated beyond the Visual-Line-Of-Sight (VLOS) of

operators in the United States [1]. Existing solutions are not

applicable to any VLOS compliance problems because the

optimal delivery route may vary greatly by the VLOS distance

and speeds of the truck and the UAV.

Therefore, we propose a novel Ground/Aerial Parcel Deliv-

ery Problem (GAPDP) with consideration of VLOS compli-

ance. We develop an exact solution and a heuristic solution for

the problem in this paper. In our exact solution, we check all

permutations of destinations for the fastest delivery route. To

calculate the fastest delivery route for destinations in a given

order, we present an index-based exact approach that relies

on an index over the VLOS areas for reducing the cost of

the route calculation. This approach finds the fastest delivery

route for every destination from all its entrances to its exits at a

pre-processing stage. The fastest routes can be retrieved from

the index, and our method can “jump” from one destination

to the other without computing routes in the VLOS areas.

Additionally, as the proposed problem is NP-hard, we also

propose a heuristic solution that utilizes delivery groups for

the proposed problem of practical size. All proposed solutions

are evaluated through extensive experiments.

The contributions of this study are summarized below:

• We propose and formally define a new Ground/Aerial

Parcel Delivery Problem (GAPDP), in which packages

could be delivered by either a truck or a UAV.

• We develop an index-based exact solution that pre-

computes the fastest delivery routes in VLOS areas of

destinations.

• We propose a heuristic solution that produces an approx-

imation for problems of practical size.

• We evaluate our solutions through extensive experiments

over a real-world road network.

The rest of this paper is organized as follows. Section II

surveys related work. The new UAV-assisted parcel delivery

problem is formally defined in Section III. Our two solutions

are illustrated in Sections IV and V. The experimental valida-

tion of our solutions is presented in Section VI. Section VII

concludes this paper.

II. RELATED WORK

In this section, we review previous studies related to the

travelling salesman problem and UAV-assisted parcel delivery

problems.

A. Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is an NP-hard

problem [19]. An intuitive method for an exact solution of

the problem is to check all permutations of destinations,

and return the shortest route among those permutations, the

computational complexity of which is O(n · n!), where n
denotes the number of destinations. Held and Karp reduced

the computational cost to O(n2 · 2n) by utilizing dynamic

programming [12]. Jones and Adamatzky approximated TSP

in a Euclidean space by shrinking “blob” [17]. In their method,

a “blob” of material emerging from low-level interactions of

particles is placed over destinations. The shrinkage process au-

tomatically and morphologically adapts to the configuration of

destinations. And finally, a TSP tour is captured by tracing the

perimeter of the blob among the destinations. Moreover, there

are many studies that have investigated heuristic solutions

for TSP [8]. A hybrid heuristic approach was developed for

the multi-commodity pickup-and-delivery travelling salesman

problem [13]. In the pickup-and-delivery TSP, each customer

could be either a producer or a consumer of a package, or

both. In other words, a package is assumed to be picked up at

a customer, and then delivered to another customer in the de-

livery process. GELS-GA is a hybrid metaheuristic algorithm

for multiple Travelling Salesman Problem (mTSP) [15]. Rather

than the traditional TSP, mTSP has two or more salesmen, and

all of them must return to the places where they start. GELS-

GA combines Gravitational Emulation Local Search (GELS)

algorithm and Genetic Algorithm (GA) for achieving the

global optimum in a high possibility. Xu et al. also proposed

a two-phase heuristic algorithm for mTSP [22]. Their method

specifically considers workload balance and minimizes the

overall travelling cost. They improved the K-means algorithm

by grouping visited cities based on their locations and capacity

constraints, and then designed a route planning algorithm for a

delivery route. However, aforementioned studies are different

from our proposed GAPDP problem; the shortest delivery

routes among destinations in GAPDP depend on speeds of

trucks and UAVs, the delivery order, the delivery method for

each destination, UAV regulations, and more.

B. Drone-assisted Parcel Delivery Problem

Agatz et al. studied the Travelling Salesman Problem with

Drones (TSP-D), formulated the problem as an Mixed Integer

linear Programming (MIP) model, and developed route first-

cluster second heuristic approaches based on local search and

dynamic programming [2]. Ha et al. proposed two heuristic

methods, either of which utilizes route-first cluster-second

or cluster-first route-second strategies to solve TSP-D [11].

They used a new mixed integer programming formulation

in the cluster step for both heuristics. Wang et al. focused

primarily on the worst case of a vehicle routing problem with

drones [21]. They assumed that a truck could be equipped with

many drones, and their investigation showed that the results

of the worst case depend on the number of drones on the

truck and the relative speed of the drones to the truck. Murray

and Chu proposed the flying sidekick TSP problem, in which

customers can be served by either a driver-operated delivery

truck or a UAV [18]. They solved the problem by utilizing an

MIP formulation. Moreover, they also proposed a heuristic ap-

proach for parallel drone scheduling TSP problem. Ferrandez
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et al. explored the delivery time and energy consumption of

a truck-drone delivery network [7]. Their proposed algorithm

aims at minimizing the time of delivery by utilizing K-means

clustering methods, and determining the optimal number of

launch sites and drones per truck. Dorling et al. proposed

two solutions for multi-trip vehicle routing problems [6].

Specifically, they first demonstrated an energy consumption

model of drones, in which the energy consumption is approx-

imately linear to the payload and battery weight. Then, they

developed a cost function by using the energy consumption

model and drone reuse. Finally, they proposed a method

that minimizes costs by considering the limit of delivery

time, and a method that minimizes the delivery time under

a budget constraint. A Randomized Variable Neighborhood

Descent (RVND) heuristic method was proposed to TSP-D

problem [5]. In the method, practical restrictions, such as

the flying time limit of drones and the limit of payload, are

considered, and the RVND heuristic is used in local searches

to find an optimal delivery route. Their experimental results

show that the help of drones can save up to 20% of time in

the last mile delivery.

However, all methods mentioned above are not applicable

to our proposed problem due to the difference in assumptions

of the problems. None of these studies considers the VLOS

restriction. The optimal delivery route may vary greatly by

setting different VLOS distances or speeds of the truck and

the UAV. Many studies output an approximation [2] [11] [18];

while we propose an exact solution to the VLOS-compliance

UAV-assisted parcel delivery problem. Moreover, Murray and

Chu assumed that the truck could move on road networks

while the UAV is in flight; but the truck and the UAV cannot be

operated simultaneously in our problem because the driver can

only either drive the truck or operate the UAV at a particular

time. In addition, in many countries, UAVs are not allowed to

land at or takeoff from a moving vehicle. Agatz et al. assumed

that the UAV can only land on and depart from the truck while

it is parked at a customer location, while the truck is allowed

to park at any locations on roads in our problem. More than

one UAV can be used with a truck in the problems proposed

by Wang et al. and Ferrandez et al.; while there is only one

UAV available with a truck for delivery in our problem, as

each UAV requires a dedicated operator to handle.

III. PROBLEM DEFINITION

Given a road network G =(V , E), where V denotes a set

of vertices and E is a set of edges, a spatial object is defined

by a tuple <x1, x2>in a Euclidean space R. Every vertex

v=<x1, x2>is also in R. DR(., .) and DG(., .) represent the

distance between two spatial objects in the Euclidean space R
and on the road network G, respectively.

Definition Given a set of destinations D = {d1, ..., dn}, there

are a truck t and a UAV u used for parcel delivery. Every

destination is served exactly once either by the truck or the

UAV. The Ground/Aerial Parcel Delivery Problem (GAPDP)

targets at finding an optimal route that minimizes the delivery

time of serving all destinations once and returning to the

distribution center. The delivery time can be calculated by

A = Ah,d1
+Ad1,d2

+...+Adi,di+1
+...+Adn−1,dn

+Adn,h (1)

where Adi,di+1 represents the time between the completion

of delivery to di and to di+1, and Ah,d1
and Adn,h are the

delivery time of d1 from the distribution center, and the time

returning to the distribution center from dn.

To make the proposed problem more realistic, there are

assumptions in the problem as follows.

• The truck travels on road network at a fixed speed tv

and the UAV moves in Euclidean space at a fixed speed

uv . The truck can stop at any locations on the road for

delivery.

• The driver is allowed to operate both truck and UAV

for delivery. However, the truck and UAV cannot move

simultaneously.

• UAV carries one package at a time. UAV returns to the

truck immediately upon the completion of delivery.

• There is only one package for a destination. If there are

two or more packages to a destination, it is conceptually

equivalent to setting up a destination at the same location

for each package.

• The delivery method can be explicitly selected by cus-

tomers (because they may prefer using the truck for

delivery, the package may exceed the payload capacity of

the UAV, or a signature may be required), which indicates

that a package could be delivered only by the truck or

the UAV. If the delivery method is not explicitly selected,

both the truck and the UAV can be used by default.

• The power of the UAV is sufficient for a round trip of

delivery (a round trip from the truck to a destination); the

time of battery replacement is negligible in this research.

• Due to the requirements of the FAA, the distance be-

tween the UAV and the driver/operator cannot be greater

than a threshold, which is called “Visual-Line-Of-Sight”

(VLOS) distance.

• All destinations can be at any locations on the road

network.

IV. DESIGN

In this section, we first present that the proposed GAPDP

problem is NP-hard, and provide an overview of our exact

solution in subsection IV-A. Then, we illustrate our index-

based exact solution in subsection IV-B.

A. Overview

To achieve an exact solution to the travelling salesman

problem, all permutations of destinations have to be visited,

and the route that provides the shortest travelling time is

the optimal route as an exact solution. The computational

complexity of this intuitive method is O(n · n!), where n
indicates the number of destinations. An improvement by

utilizing dynamic programming techniques had been proposed,

which could reduce the computational cost to O(n2 ·2n) [12].
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Algorithm 1 GAPDP(D, h)

1. shortestDeliveryTime = ∞
2. for D′ ∈ {all permutation of D} do
3. shortestDeliveryTime = min(shortestDeliveryTime,

ShortestTime(D′, h));

4. end for
5. return shortestDeliveryTime;

Both approaches assume that the shortest distance between any

two destinations can be calculated in constant time (O(1)).
However, this assumption is not applicable to our proposed

GAPDP problem because the location where the truck stops

for delivery may greatly vary by the delivery order of destina-

tions, speeds of the truck and the UAV, the VLOS distance, and

more. Additionally, the optimal delivery route may consist of

the fastest paths that connect destinations in Euclidean spaces

and on road networks, which makes the GAPDP problem more

challenging than the TSP problem.

Therefore, we propose an exact solution to address the

GAPDP problem. Because GAPDP is NP-hard, shown in

Theorem IV.1, our solution follows a fundamental idea that

finds an optimal delivery route by checking all permutations

of destinations. The details are described in Alg. 1, which

receives a set of destinations D and a starting distribution

center h, and returns the fastest delivery time for D. For a

specific permutation of D in the FOR loop at lines 2 to 4, the

function ShortestTime(D′, h) calculates the shortest delivery

time of destinations D′ in a specific order. The variable

shortestDeliveryT ime always maintains the shortest time

of the delivery. To find the fastest route of destinations in

a given order, we propose an index-based approach, which

pre-computes the fastest delivery route in VLOS areas of

destinations. Consequently, we could “jump” from an entrance

of the VLOS area of a destination to its exit without route

searching at run-time.

Theorem IV.1. GAPDP is NP-hard.

Proof. GAPDP is NP-hard, since the Travelling Salesman

Problem (TSP) is NP-hard [19], and TSP is a special case

of the GAPDP problem when all packages are restricted to be

delivered by the truck.

B. The Fastest Route for Destinations in a Given Order

A major challenging problem in GAPDP is that the fastest

delivery route of destinations in a given order may greatly vary

under different settings of speeds of the truck and the UAV,

delivery methods of destinations, and the VLOS distance. In

this subsection, we illustrate an approach that finds the fastest

delivery route for destinations in a given order. The fastest

route is represented by a sequence of stop locations, where

the truck is stopped and UAV is launched for delivery.

Since the operating range of UAVs is restricted by the

Visual-Line-Of-Sight (VLOS) distance from operators [1], the

truck must stop and the UAV must be launched at a location in

the VLOS area of a destination for delivery. Thus, an intuitive

Fig. 3. An example of selecting the fastest delivery route for two
consecutive destinations.

algorithm visits all roads in the VLOS areas of destinations,

and finds a sub-optimal stop location on each road. Then,

the best route for serving destinations can be easily derived

from the best sub-optimal stop locations. It is worth noting

that there is a special case, in which the delivery time of a

destination by truck is equal to the delivery time of stopping

at the destination and using UAV for delivery because the

delivery distance for UAV is 0. With this observation, our

algorithm assumes that the UAV is used for all delivery for

simplifying the problem. If the delivery by truck is the optimal

method or the truck is a preferred method for a destination,

our algorithm returns an equivalent case of using the UAV (the

delivery distance of the UAV is 0), and the fastest delivery

route and the shortest delivery time are the same with the

methods considering delivery by truck.

Fig. 3 displays an example of serving two consecutive

destinations di−1 and di. We only display one route {h,

di−1.v4, di.v3, h} for better illustration. Initially, the truck

starts from h, and we calculate the travelling time from h
to all vertices in the VLOS area of di−1, where di−1.V =

{di−1.v1, ..., di−1.v10}. Then, we set those vertices as starting

points, and calculate the delivery route for di. Each of these

routes ends at a vertex in the VLOS area of di. So, the fastest

delivery route to a vertex of di can be found by examining

all combinations of vertex of di−1 and di. Then, in the next

iteration, the vertex of di will be a starting point used for

calculating the delivery time of the next destination.

In addition to checking all permutations of destinations,

the intuitive approach also needs to search the network space

for calculating the shortest network distance between two

locations, and iterate all roads to find an optimal stop location

in VLOS areas, the computational cost of which would be

considerably high due to large number of possible stop loca-

tions and complex road networks. To avoid the computation at

run-time, we turn to an alternative that pre-computes optimal

delivery routes in the VLOS areas. We observe that the truck

has to enter a VLOS area before delivery, and leave the area

for the next if the VLOS areas of two destinations do not

overlap with each other. If this is the case, the optimal delivery

routes can be calculated at a pre-processing stage, and we can

“jump” over the VLOS areas by retrieving the optimal routes

from index.

Therefore, we develop an index-based approach, in which

routes from entrances of destinations to their exits are pre-
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Algorithm 2 ShortestTime(D, h)

1. for di ∈ D = {d1, ..., dn} do
2. Let di.map be the mapping from entrances to exits;

3. if di = d1 then
4. for e ∈ d1.Exit do
5. d1.time[e] = min(DR(h, e′)/tv + d1.map[e′][e] —

e′ ∈ d1.Exit);
6. end for
7. else
8. Let di−1 be the last visited destination;

9. for e ∈ di.Exit do
10. di.time[e] = min(di.map[e′][e] + DR(e′, e′′)/tv +

di−1.time[e′′] — e′ ∈ di.Exit, e′′ ∈ di−1.Exit);
11. end for
12. end if
13. end for
14. Let dn be the last destination in D;

15. for e ∈ dn.Exit do
16. dn.time[e] += DR(e, h)/tv;

17. end for
18. return min(dn.time[e]);

built. We denote di.Exit to be the set of intersections of the

road network and the VLOS circle of destination di. Here

di.Exit is also called the entrances or exits of di in this paper.

The details of the index-base approach are described in

Alg. 2. We iterate all destinations in the given order in the

FOR loop from lines 1 to 13. Then, given a specific destination

di, if di is the first destination d1, we calculate the shortest

travelling time from the distribution center h to every exit

of d1.e at lines 4 to 6. DR(h, e′)/tv indicates the travelling

time from h to an exit d1.e
′, and d1.map[e′][e] is the shortest

delivery time from the entrance d1.e
′ to the exit di.e after

serving d1. So, the shortest time of serving d1 and stopping

at d1.e is kept in d1.time[e]. Then, we calculate the shortest

delivery time of an intermediate destination di in the FOR

loop at lines 7 to 12. For a specific exit di.e, the shortest

delivery time after di is served and the truck stops at di.e
is calculated in line 10, where di.map[e′][e] represents the

shortest delivery time of the route from the entrance di.e
′

to di.e. Here di−1.time[e′′] denotes the shortest time when

the truck stops at an exit of the last destination di−1, and

DR(e′, e′′)/tv is the travelling time from an exit di−1.e
′ to an

entrance di.e
′′. Finally, the travelling time from exits of the last

destination to the distribution center is added to dn.time[e],
and the shortest delivery time of dn.time[e] is the solution.

It is easy to see that we have to check all exits of every

destination. The computational complexity of Algorithm 2 is

O(n·|di.Exit|2), where |di.Exit| denotes the number of exits

of a destination di and n is the number of destinations. The

computational complexity of our VLOS-index-based solution

is O(n2 · 2n · |di.Exit|2).
Moreover, there is a special case that the Euclidean distance

between two continuous destinations is shorter than the VLOS

Fig. 4. An example of selecting delivery routes in Alg.2.

distance. In this case, the two VLOS areas overlap; the exit(s)

of the VLOS area of a destination may be in the VLOS area of

the second destination. This indicates that the parcel truck may

already be in the VLOS area of the second destination after

exiting the VLOS area of the first destination. The VLOS-

based index over single VLOS area cannot be used for route

searching in this case. This problem can be solved by merging

the VLOS areas of two or more destinations if they overlap.

For example, given two destinations di−1 and di, a VLOS-

based index can be constructed to contain all optimal routes

from entrances to exits of the union of VLOS areas of di−1

and di. All these routes start from an entrance of di−1 and

stop at an exit of di.

An example of our second approach is displayed in Fig. 4.

The road networks in the VLOS areas of destinations are not

accessed in our approach. Instead, the fastest delivery route

and time have been calculated and are available in VLOS-

based index. Accordingly, take the delivery route in Fig. 4

for example, we enter the VLOS area of di−1 from entrance

di−1.v6, and jump to the exit di−1.v7 to leave the VLOS area.

Similarly, we jump over from the entrance di.v1 to the exit

di.v4 in the VLOS area of di.

Next, we will present our method of finding the optimal

route for one destination. This sub-problem can be formally

defined as follows.

Definition Given two destinations di−1 and di, di−1 has been

served, and di is the next destination for delivery. Let di.V be

the set of vertices in the VLOS area of di, then this problem

finds an optimal delivery route for di, which could start from

any vertex in di−1.V and end at any vertex in di.V. Here di
must be served by the truck or the UAV exactly once on every

route. All assumptions in Definition III are also applied to this

sub-problem.

The fundamental idea of our method is to check every road

in the VLOS area of di, and find an optimal stopping location

on a road as a sub-optimum. The global optimum to serve di
is the best of these sub-optima. Given a starting location v
and a road r where the truck stops, there are four possible

delivery routes starting from v and ending at either of the two

end points of road r. As listed below, o denotes the optimal

stop location on road r for delivery, and l1 and l2 represent

the two end points of road r.

• Route 1: the truck first arrives at o through l1, and then
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Fig. 5. An example of calculating
the fastest delivery from from s
to di.

Fig. 6. An example of finding the
optimal stop location on a road
segment.

goes back to l1 after delivery.

• Route 2: the truck first arrives at o through l1, and then

moves to l2 for the next delivery.

• Route 3: the truck first arrives at o through l2, and then

moves to l1 for the next delivery.

• Route 4: the truck first arrives at o through l2, and then

goes back to l2 after delivery.

The total delivery time of these four candidate routes are
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

DR(v, l1)+2·DR(l1, o)
tv + 2·DG(o, di)

uv Route 1
DR(v, l1)+DR(l1, l2)

tv + 2·DG(o, di)
uv Route 2

DR(v, l2)+DR(l1, l2)
tv + 2·DG(o, di)

uv Route 3
DR(v, l2)+2·DR(l2, o)

tv + 2·DG(o, di)
uv Route 4

(2)

where

D
G

(o, di) =

√
DG(l1, di)

2 + DR(l1, o)2 − 2 ·DG(l1, di) ·DR(l1, o) · cosα

0 ≤ D(l1, o), D(l2, o) ≤ D(l1, l2)
(3)

It is easy to observe from Equ. 2 that the delivery times

of Routes 2 and 3 only depend on DG(o, di), which is the

distance between o and di in Euclidean space. DR(v, l1),
DR(v, l2) and DR(l1, l2) are the network distance among s,

l1, and l2, which are constants in the equation. Therefore, for

the shortest delivery times of Routes 2 and 3, o should be

selected at a location closest to di on the road r. If di is on r,

then o should be at the location of di. If di is not on the road

r and the projection of r from di is on r, then the projection

is the optimal stop location for the delivery. If the projection

is out of r, the end point of r closer to the projection is the

optimal stop location.

For Routes 1 and 4, let x = DR(l1, o), then the delivery

times of the two routes can be represented by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DR(v, l1)+2·x
tv

+
2·

√
DG(l1,di)

2+x2−2·cosα·x·DG(l1,di)

uv

Route 1

DR(v, l2)+2·(DR(l1, l2)−x)
tv

+
2·

√
DG(l1,di)

2+x2−2·cosα·x·DG(l1,di)

uv

Route 4
(4)

where α is the angle of the road r and the line segment from

l1 to di, and 0 ≤ x ≤ D(l1, l2). DR(v, l1), DG(l1, di),
DR(l1, l2), t

v , and uv are constants. Due to the space limit,

the optimal locations for the two routes can be found at [20].

It is worth noting that if there exist two or more optimal

stopping locations on one road, the total delivery time in

Equ. 2 includes the time of moving to an end of the road

twice. Theoretically, in this case, we have to partition the road

into two or more road segments in such a manner that there

is at most one stopping location on one road segment.

Fig. 5 displays an example of six road segments {r1, r2,

r3, r4, r5, r6} in the VLOS area of a destination di and v is a

vertex in the VLOS area of di−1. Fig. 6 displays the method

of calculating the optimal stop location o on r6. We set x to

be the distance between r6.l1 and o, and other variables are

constants in Equ. 4.

The computational complexity of our solution is O(n2 ·
2n · |V |2), where |V | denotes the average number of vertices

in the VLOS areas of destinations. If all destinations are

restricted to truck-delivery only, then |V | becomes 1, and the

proposed GAPDP becomes the travelling salesman problem,

the computational complexity of which is O(n2 · 2n).
V. A HEURISTIC FOR GAPDP

From our experimental results (see Section VI), the pro-

posed exact solutions require hundreds of seconds to determine

an optimal delivery route of 15 destinations. The execution

time grows exponentially due to the nature of NP-hard prob-

lems. In this section, we propose a heuristic approach for

solving the GAPDP problem of practical size.

In general, our approach is derived from heuristic ap-

proaches for the travelling salesman problem (TSP). If all

destinations are restricted to truck delivery, a heuristic TSP

approach can be used to address the GAPDP problem. While,

if UAV delivery is allowed at one or more destinations,

our heuristic method prefers 1) serving all these destinations

by UAV and 2) stopping at a location to serve as many

destinations as possible.

Specifically, our method first generates destination groups,

each of which contains destinations that can be served by UAV

from one location. The VLOS areas of the destinations in a

destination group must overlap on road networks, so that the

truck can stop at a location in the overlapping area, and each

destination can be served by UAV in a round trip between

the stopping location and the destination. If a destination is

served by truck only or its VLOS area does not overlap with

the ones of others, the destination forms a destination group

of itself. The details of the first step are described in Alg. 3.

DS denotes the set of delivery group. In the while loop (lines

3-15), delivery groups are produced in iterations until D is an

empty set.

Fig. 7. An example route of
delivery group.

Fig. 8. An example of com-
puting the optimal stopping lo-
cation on a road segment for
delivery.
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Algorithm 3 GAPDP(D, h)

1. DS = ∅;

2. RoD∗ = ∅;

3. while D �= ∅ do
4. Let di be an element of D;

5. if di is served by truck only then
6. DS = DS ∪ {{di}}; D = D\{di};

7. else
8. if ∃ dj ∈ D, i �= j, VLOS(di)∩ VLOS(dj) �= ∅ then
9. Let G = {dk ∈ D|V LOS(di) ∩ V LOS(dk) �= ∅};

10. DS=DS ∪ {G}; D = D \G;

11. else
12. DS = DS ∪ {{di}}; D = D\{di};

13. end if
14. end if
15. end while
16. RoDS∗ = TSP(DS, h);

17. for ds ∈ RoDS∗ do
18. if |ds| = 1 then
19. RoD∗ = RoD∗ ∪ ds;

20. else
21. RoD∗ = RoD∗ ∪ DeliveryRouteInGroup(ds);

22. end if
23. end for
24. return RoD∗;

A heuristic TSP approach is applied to search an optimal

visiting order for the delivery groups. If a delivery group

has two or more destinations, we use the central location

of the destinations as the delivery location of the delivery

group. At line 16 of Alg 3, RoDS∗ represents the visiting

order of delivery groups generated by a heuristic TSP solution.

Then, we iterate every delivery group in RoDS∗ in order, and

compute the delivery order of destinations in a specific group

by using Alg. 4. Finally, the delivery order of destinations

RoD∗ is returned as the result, and the delivery route and

cost can be computed by using Alg. 2.

Fig. 7 displays an example, in which the VLOS areas of d1
and d2 overlap. The delivery group of d1 and d2 and its central

location d′ is found and used as the delivery location of the

group in Alg. 3. Then, a heuristic TSP approach is applied to

a delivery problem of {h, d′, d3, d4, d5}, and Alg. 4 is used

to compute the delivery order of {d1, d2} in the group.

Algorithm 4 DeliveryRouteInGroup(ds)

1. RoD∗ = ∅;

2. while ds �= ∅ do
3. D = {di ∈ ds | ⋂

V LOS(di)
�= ∅ }

4. Iterate all roads in
⋂

V LOS(di)
, and find an optimal

stopping location for delivery to D;

5. RoD∗ = RoD∗ ∪ D; ds = ds\{D};

6. end while
7. return RoD∗;

Alg. 4 computes a delivery order in a delivery group. In

each iteration, D denotes a set of destinations, each of which

overlap with all others. So, D is equal to or is contained in ds.

The optimal stopping location for serving all destinations in D
by UAV can be computed in O(|D| × |R|), where |R| indicates

the number of roads in the overlapping area ({⋂V LOS(di)
|di ∈

D}). At line 4, we iterate all roads in the overlapping area, and

find the best location among sub-optimal stopping location on

each road for delivery. The sub-optimal location on each road

can be determined in O(|D|). Take Fig. 8 for example, assume

that the truck stops at v = {xv, 0} on road l1l2 for serving {d1,

d2, d3, d4}. The delivery cost is
∑4

i=1

√
(di.x− xv)2 + di.y2

(l1 ≤ x ≤ l2), the minimum value of which can be easily

obtained by using the derivative of the function.

VI. EXPERIMENTAL VALIDATION

In this section, we evaluated the performance of our pro-

posed solutions to the novel GAPDP problem over the road

network of Oldenburg, Germany (containing 7K roads and 6K

nodes [4]). The road network was normalized to the space of

[0, 104]2. The destinations were randomly selected on the road

network. Our proposed algorithms were implemented in the C

programming language. In our experimental results, “Exact

Solution” refers to our exact algorithm that maintains the

fastest route in a VLOS-based index. We also developed our

heuristic method that applies the nearest neighbor travelling

salesman solution. All data were loaded into the main memory

during the execution of simulations.

The VLOS-based index was pre-built and the road distance

between every pair of nodes was pre-computed in a pre-

processing stage. This computation time is not included in

the response time reported in our experimental results.

All the experiments were conducted on a Ubuntu Linux

server equipped with two Intel Xeon E5-2670 v3 2.30 GHz

processors and 256 GB of memory.

A. Effect of Number of Destinations

We varied the number of destinations from 3 to 15 in the

first group of experiments. We fixed the normalized VLOS

distance to 10 and 50 units. All destinations can be served

by either the truck or the UAV. The normalized speeds of the

truck and the UAV were fixed at 40 units per second. The

experimental results are displayed in Fig. 9 and Table I.

The cost of delivery produced by the heuristic method grows

faster than our exact solution, but the key point is that the

heuristic method can complete the computation in milliseconds

in all cases of this group of experiments while the exact

solution needs at least 60 seconds or 400 seconds in cases

of 15 destinations. This verifies that GAPDP is NP-hard; the

response time of the exact solution increases exponentially.

Moreover, the exact method took longer against queries with

larger VLOS areas. For example, it required 54.7 seconds

when the VLOS distance was equal to 10 units; while the

response time increased to 423 seconds if the VLOS distance

was set to 50 units. This is because the VLOS-based index

method needed to visit more entrance-exit pairs of VLOS
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Fig. 9. Vary the number of destinations.

TABLE I Response Time of our Heuristic Method.

VLOS=10
Number of Destinations 20 50 100

Response Time (s) 0.003 0.007 0.019

VLOS=50
Number of Destinations 20 50 100

Response Time (s) 0.019 0.040 0.099

areas. In this group of experiments, the VLOS-index can be

built, on average, in 9.7 seconds.

Table I displays the response time of our heuristic method in

cases of up to 100 destinations (A FedEx driver typically has

75-80 stops per day [16]). The results show that our heuristic

method helps us solve the real delivery problems in 0.1 second,

which cannot be achieved by our exact solutions.

B. Effect of VLOS distance

We took a closer look at the effect of VLOS distance to

our proposed solutions by increasing the normalized VLOS

distance from 10 to 90 units. The number of destinations was

fixed at 12. The normalized speeds of the truck and the UAV

were fixed at 40 units per second. We evaluated two cases, in

which 100% and 80% of destinations can be served by either

the truck or the UAV. The experimental results are displayed

in Fig. 10.

The exact method ran longer for queries with larger VLOS

areas. According to our analysis in Section IV, the com-

putational cost of the method is quadratic to the VLOS

distance, since the number of road segments and the VLOS

areas increase quadratically to the VLOS distance. Moreover,

queries can be completed in a shorter period of time if 20%

of destinations were restricted to truck delivery only. If a

destination prefers truck delivery, there is no need to search

optimal routes in the VLOS areas. Instead, the truck has to

stop at the destination, and the fastest route to the destination

on the road network is the optimal route for delivery.

Fig. 10 also compares the delivery cost by varying the

VLOS distance. There is a slight drop when VLOS areas

become larger because there could be a better delivery route

found in a larger VLOS area.
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Fig. 10. Vary the VLOS distance.

C. Effect of Percentage of Destinations Preferring Truck De-
livery Only

We also evaluated the effect of delivery methods in exper-

iments by varying the percentage of destinations preferring

truck delivery only. We fixed the number of destinations at 12,

and the normalized speeds of the truck and the UAV were fixed

at 40 and 60 units per second, respectively. The normalized

VLOS distance was set to 50 and 90 units. The experimental

results are displayed in Table II.

From Table II, we observe that the delivery cost of our

exact method increases and the benefit of utilizing the UAV for

delivery decreases as more destinations prefer truck delivery.

Moreover, we can save more delivery time in larger VLOS

areas. In the case of VLOS areas equal to 90, if all destinations

allow UAV or truck for delivery, we can save 12% in the

delivery cost compared to the case of all truck delivery only.

VII. CONCLUSION AND FUTURE WORK

In this research, we formulated a novel problem that utilizes

both a truck and a UAV for parcel delivery. We also considered

the VLOS regulation that restricts the UAV operating range.

Then, we proposed an exact solution that pre-computes the

fastest delivery routes in VLOS areas for the problem. Due

to the high computational cost of the exact solution, we

also developed a heuristic solution for the proposed problem

in practical size. We demonstrated the performance of the

proposed two solutions through extensive simulations.

TABLE II Delivery cost of our exact solution by varying the
percentage of truck delivery only.

Percentage of destinations preferring truck delivery
0 20 80 100

VLOS=50 1089 1110 1153 1172
VLOS=90 1045 1083 1155 1172
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For future work, we will apply more practical restric-

tions/assumptions, such as UAV regulations or delivery with

help of two or more UAVs, in problems in order to make our

solutions useful for more applications.
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