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Abstract— Charging infrastructure deployment is to seek the proper
plan of settling charging stations and charging piles under multiple
constraints, such as recharging demand, cruising range, etc., and it
has been asserted as an NP-Complete problem. In this paper, we pro-
pose a multicriteria-oriented approach of efficiently deploying charging
infrastructure to cope with the problem. We firstly formulate five realistic
charging objective functions that exhibit a significant diminishing returns
effect, i.e., submodularity, and then exploit the submodularity of these
objectives to design the acceleration algorithms for Charging Station
PLacement (CSPL) with the provable performance guarantees. The cor-
responding algorithms are respectively named Lazy Greedy with Direct
Gain (LGDG) and Lazy Greedy with Effective Gain (LGEG), and they
scale well to the road networks of arbitrary size. Relying on the inference
that the linear combination of submodular functions is still a submodular
function, we treat CSPL as a multicriteria optimization problem that can
be efficiently solved by the proposed algorithms. Moreover, we employ
Erlang-Loss system to gain an optimal Charging Pile ASsignment (CPAS),
which is capable of reducing the gap between the growing complexity of
charging demands and the constrained supply of charging resources in
considering the correlation between the primary human activities and the
charging process. The experimental evaluation with real data sets shows
that, compared with the state-of-the-art methods, the proposed approach
reveals better effectiveness and efficiency, and it offers a potent solution
to the planning of charging infrastructure for electric vehicles with large-
scale datasets in reality.

Index Terms— Submodularity, charging station placement, charging
pile assignment, electric vehicle.

I. INTRODUCTION

EMISSIONS from road transportation are responsible for most of
air quality problems in highly populated urban areas. Replacing

conventional Internal Combustion Engine (ICE) vehicles with Electric
Vehicles (EVs) offers an appealing chance to reduce excessive energy
dependence and to mitigate greenhouse gas emissions. However,
“range anxiety” is a significant obstacle to limit drivers’ acceptance
for EVs, and it always arises the drivers’ worry about being stranded
with insufficient range to reach the destination. One feasible solu-
tion to alleviate such range anxiety is increasing public charging
infrastructure, which is not well developed yet in many areas of the
world.

To efficiently deploy the charging infrastructure, we propose
a multi-criterion-oriented optimization approach integrating the
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TABLE I

COMPARISON AMONG THE TYPICAL METHODS

solutions to placing charging stations and assigning charging
piles. The essential of Charging Station PLacement (CSPL) is to
find k constrained locations with the maximum gain, which is
NP-hard and thus brings two key issues, i.e., the efficiency and
the target problem granularity. The typical methodologies to solve
CSPL include Mixed Integer Linear Programming (MILP), meta-
heuristic approach, and greedy-based algorithms. We reviewed and
analyzed the representative works of adopting the methodologies,
based on which the comparison among the above three types of
methodologies are summarized and listed according to the time cost
of solving problem, i.e., the efficiency, and the treatable problem
size, i.e., the target problem granularity. We also categorized the
methodologies into deterministic and probabilistic. That a method-
ology is deterministic means the results would be identical through
multiple runs of the same problem instance, whereas a methodology
of probabilistic nature would produce alterable outcomes during
multiple runs. Elicited from Table I, we designed two accelerating
algorithms (named LGDG and LGEG) based on the greedy methods
with incorporating the submodularity [12], [13] of the objectives
for CSPL.

Referring to assigning charging piles given the placed charging
stations, we employ Erlang-Loss system to gain an optimal Charging
Pile ASsignment (CPAS), which is capable of reducing the gap
between the growing complexity of charging demands and the con-
strained supply of charging resources in considering the correlation
between the primary human activities and the charging process.

II. THE SOLUTIONS TO CSPL PROBLEM

A. Problem Statement

Problem Definition: Given a road network G =< V, E >, a set of
objective functions {F1, . . . , FL }, a budget of k charging stations with
N new charging piles in total, where value k ≤ |V |, we aim to find
the optimal k-location set A to build charging stations and the optimal
assignment of charging piles to the stations, so as to maximize the
total gain under multiple criteria. In other words, we need to pick
proper weights λ1 > 0, λ2 > 0,…, λL > 0, to optimize the total

benefit from F =
L�

i=1
λi × Fi (A), where

L�
i=1

λi = 1.

B. The Objectives to CSPL Problem

Objective 1 Maximizing the Charging Likelihood (MCL): Parking-
lot-based charging station placement is more proper for the long-
duration battery charging because the charging process is just one
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of the incidental activities during a trip (e.g., sightseeing, shopping,
etc.) and does not require extra waiting time. The parking lots
connecting with a large number of tracks should thus be selected.
The corresponding criterion is defined as the following expression:

Z = max(R(A) : A ⊆ V, |A| = k)

R(A) =
�

t∈T
w(t)× R(A, t)

R(A, t) =
⎧⎨
⎩

1, ∃v ∈ A, passby(v, t) = true

0, otherwise
(1)

In Formula (1), R(•) denotes the charging likelihood function which
is the same in all the presented objective functions, A is a subset
of V in the given road network G =< V, E >, k denotes the
maximum number of charging stations selected according to the total
financial budget and T is a set of trajectories. w(t) represents the
weight (importance) of trajectory t , and it is set to 1.0 in this work.
passby(v, t) is used to determine whether v ∈ t . From Formula (1),
the higher the value of R(A) is, the more probable that the set of
parking-lots A should be chosen.

Objective 2 Maximizing the Charging Willingness of Drivers
(MCW): To save driving time during a trip, drivers prefer to charge
the vehicles nearby either the start point or the destination point rather
than in the middle of the trip. We suppose that drivers’ willingness
obeys a normal distribution described by Formula (2). For the normal
distribution, the probability that a normal deviate lies in the range
between μ−3σ and μ+3σ is given by P{|X − μ| < 3σ } = 0.9974.
It means the probability that X falls outside (μ − 3σ , μ + 3σ ) is
less than three thousandths, i.e., the “3σ ” principle of the normal
distribution. In our work, “nearby” refers to the area of 1km2

surrounding the given point, and 3σ should be correspondingly set as
approximately 1.0. As shown in Formula (2), we set σ = 1√

2π
≈ 0.4

because it happens to be a type of standard normal distribution with
variance σ 2 = 1

2π .

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1

σ · √2π
e
− (x−μ)2

2·δ2 , μ = 0, σ = 1√
2π

, 0 ≤ x ≤ L

2
1

σ · √2π
e
− (x−μ)2

2·δ2 , μ = L , σ = 1√
2π

,
L

2
≤ x ≤ L

(2)

Given the probability density function in Formula (2), we define
the second objective by Formula (3). dis(v, t) represents the distance
from the start point of a trajectory t to a specific location v . Function
f (•) is given by Formula (2).

Z = max(R(A) : A ⊆ V, |A| = k)

R(A) =
�

t∈T
w(t)× R(A, t)

R(A, t) = max{ f (dis(v, t)) : v ∈ A} (3)

Objective 3 Maximizing the Charging Demand of EVs : For EVs,
the charging demand grows with the distance from the start point
increasing. The following criterion is used to select the locations for
charging stations. length(t) denotes the length of a trajectory t .

Z = max(R(A) : A ⊆ V, |A| = k)

R(A) =
�

t∈T
w(t)× R(A, t)

R(A, t) = dis_ratio(A, t))

dis_ratio(A, t)

= max{dis(v, t)/length(t) :v ∈ A} (4)

Objective 4 Maximizing the Coverage of POIs (MCP): As the
charging process is an auxiliary process of the main activities
occurring at POIs, the density of POIs around the parking lots is
meaningful for drivers/travelers to choose their parking locations.

Formula (5) specifies the corresponding objective function, in which
P O I is a set of vertices representing POIs, w(i) denotes the weight
of vertex i , and threshold is designated to prescribe the near area.

Z = max(R(A) : A ⊆ V, |A| = k)

R(A) =
�

i∈P O I
w(i)× R(A, i)

R(A, i) =
�

1, ∃v∈ A, dis(v, i)≤ threshold

0, otherwise
(5)

Objective 5 Maximizing the Distance Reduction from CS to POIs
(MDR): Since the principal activities usually occur at POIs during
a trip, minimizing the distance from CS to the near POIs is nec-
essary and meaningful for drivers to save the time cost in dealing
with charging. The corresponding objective function is specified as
Formula (6), in which threshold has the same meaning as that in
Formula (5).

Z = max(R(A) : A ⊆ V, |A| = k)

R(A) =
�

i∈P O I
w(i)× R(A, i)

R(A, i) = threshold − τ(A, i)

τ(A, i) = min{min
v∈A

dis(v, i), threshold} (6)

C. Problem Analysis

All the presented objective functions share several intuitive prop-
erties. Given that R(A) is non-negative for each placement A (seen
in Formula (1, 3, 4, 5, 6), we generally want to maximize the benefit
from each distinct function. If we place no CS, the total benefit we
can get is 0, i.e., R(∅) = 0. We can also find that each function
R is non-decreasing, i.e., for subsets A ⊆ B ⊆ S, it holds that
R(A) ≤ R(B), hence the benefit can only increase if we place more
charging stations. Besides, there is an additional intuitive property:
when we add a CS to a large-scale set of the deployed charging
stations, we would get less benefit than that gained by adding one
CS to a small-scale set. Such diminishing returns are formalized as
submodularity by G.L. Nemhauser et al. in [12], i.e., a set function
F is called submodular if for all subsets A ⊆ B ⊆ S and the element
s ∈ S it holds that F(A ∪ {s}) − F(A) ≥ F(B ∪ {s}) − F(B).
Referring to the proof of submodular in [12], we can prove that all the
objective functions mentioned above are submodular, and the linear
combination of submodular functions is still a submodular function.
In the following sections, we will employ the submodularity of the
presented objective functions accelerate solving the corresponding
optimization problem.

D. The Acceleration Algorithms for CSPL Problem

Simple Greedy algorithm is a conventional heuristic method and
provides the provable guarantees that the greedy solutions achieve at
least (1 − 1

	
e) ≈ 63% times of the optimal results. Minoux in [8]

and Jure Leskovec et al. in [10] respectively introduced the Lazy
Greedy (LG) algorithm and the CELF (Cost-Effective Lazy Forward
selection) algorithm to separately improve the efficiency of Simple
Greedy algorithm. To handle the issue that the computing efficiency
of the algorithms would be suppressed under large-scale datasets,
we propose two improved algorithms (respectively abbreivated as
LGDG and LGEG) that are independent with the dataset scale to
accelerate both the Lazy Greedy algorithm and the CELF algorithm
when dealing with the CSPL problem under large-scale datasets.

As stated in Algorithm 1, LGDG divides the trajectory dataset
(denoted as T ) into two subsets, i.e., the common trajectories covered
by both the placement A and the vertex v∗, and the trajectories
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Algorithm 1 Lazy Greedy With Direct Gain: LGDG

A← ∅;
//AT : a set of trajectories covered by A;
//T v∗: a set of trajectories covered by v∗;
for each v ∈ V do

δv ←∞;

while ∃v ∈ V \A and c(A ∪ {v}) ≤ Budget do
for each v ∈ V \A do

curv ← f alse;

while true do
v∗ ← arg max

v∈V\A,
c(A∪{v})≤T hreshold

δv ;

if curv∗ then
A← A ∪ v∗;
for each t ∈ T v∗ do

R(A, t)=max{R(A − v∗, t), R({v∗}, t)};
break;

else

δv∗ ←
�

t∈(AT∪T v∗)



P(t)× (R(A ∪ {v∗}, t)
−R(A, t))

�

+ �
t∈(Tv∗−(AT∪T v∗))

�
P(t)× R(A ∪ {v∗}, t)

;
curv∗ ← true;

return A;

belonging to T v∗ but not AT , in which AT represents the set of tra-
jectories covered by the placement A and T v∗ denotes the set of tra-
jectories covered by the vertex v∗. Correspondingly, we can directly
get the benefits from adding one charging station v∗ according to the
equation δv∗ =

�
t∈(AT∩T v∗) P(t)× (R(A ∪ {v∗}, t)− R(A, t)) +�

t∈(T v∗−(AT∩T v∗)) P(t)× R(A ∪ {v∗}, t) without simultaneously
calculating both R(A ∪ {v∗}) and R(A). Since the set T v∗ only
accounts for a small part of the entire trajectory collection (i.e., T ),
Algorithm 1 enables to improve the efficiency of deploying charging
stations dramatically.

According to the submodularity revealed by the objective func-
tions, Algorithm 2 divides the trajectory dataset into two subsets,
and narrows the search scope within the first set by eliminating
those trajectories with which the benefit gained by the placement
A is less than that of the vertex v∗. Namely, if t ∈ AT ∩
T v∗ and R(A, t) > R(v∗, t), then we could correspondingly
remove t from the first group and assess the marginal gain with
δv∗ =

�
t∈AT∩T v∗,R({v∗},t)>R(A,t) P(t)× (R({v∗}, t)− R(A, t))+�

t∈(T v∗−(AT∩T v∗)) P(t)× R({v∗}, t) directly. The evaluation of

the algorithms is depicted in Section IV.

E. Multicriteria Optimization

Different objective functions produce a variety of deployments,
and each deployment A has a score vector denoted as R(A) =
(R1(A), . . . , Rm(A)), where m is the number of objectives. In prac-
tical situations, two deployments Ai and A j might be incompa-
rable, i.e., given Ri (A1) > Ri (A2), there could still exist a fact
that R j (A1) < R j (A2). We prospect to simultaneously optimize
multiple objectives, namely, to achieve the trade-off among all the
given objectives. In this paper, we calculate the Pareto optimal
solutions for trading off the objective functions because it is generally
impossible to seek out the globally optimal solution to a multi-
criterion optimization problem. The non-negative linear combination
of objective functions can transform one multi-criterion optimization

Algorithm 2 Lazy Greedy With Effective Gain: LGEG

A← ∅;
for each v ∈ V do

δv ←+∞;

while ∃v ∈ V \A and c(A ∪ {v}) ≤ Budget do
for each v ∈ V \A do

curv ← f alse;

while true do
v∗ ← arg max

v∈V\A,
c(A∪{v})≤T hreshold

δv ;

if curv∗ then
A← A ∪ v∗;
for each t ∈ T v∗ do

R(A, t) = max{R(A − v∗, t), R(v∗, t)};
break;

else

δv∗ ←
�

t∈(AT∩T v∗),
R({v∗},t)>R(A,t)



P(t)× (R({v∗}, t)
−R(A, t))

�

+ �
t∈(Tv∗−(AT∩T v∗))

�
P(t)× R({v∗}, t)

;
curv∗ ← true;

return A;

problem into a scalarized multi-objective optimization problem as
depicted by Formula (7) [15]. Correspondingly, a Pareto frontier [16]
consisting of a set of Pareto optimal solutions can be obtained by the
ad hoc adjustment of the weights {λi } in Formula (7). Although the
number of generated Pareto solutions grows to be huge in practice,
LGDG and LGEG can help improve the efficiency of obtaining Pareto
solutions since the combined function R(A) is a linear combination
of submodular.

max R(A) R(A) =
�

i
λi Ri (A) (λi > 0) (7)

III. THE SOLUTIONS TO CPAS PROBLEM

Public charging is usually an affiliated activity during a trip so
that the actual charging time would mainly depend on the primary
activities of the trip. Seen that the remaining time of acting the
activities is unpredictable, we assume that drivers would not stop to
queue at CS when none of the charging piles are available, by which
the latest arrived EV would lose the chance of charging if the charging
piles are all occupied [14]. We employ the M/M/n/n Queuing System
to solve the Optimal Charging Pile Assignment. The most important
evaluation index of the queuing system is related to the proportion
of losing EVs at each CS. We set Ploss as the measurement. Given
a predefined threshold P∗loss for the loss rate at charging stations,
the optimal charging pile assignment can be obtained through the
following objective function:

min : n, n ∈ N

s.t . : Ploss ≤ P∗loss (8)

i.e.,

min : n, n ∈ N

s.t . : Ploss = Pn =
ρn

n!
n�

k=0

ρk

k!
≤ P∗loss (9)
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where Pn represents the steady state probability when there are n EVs
at the charging station. By the regular experience, the phenomena of
EVs arriving at CS obeys a Poisson process with the rate λ, and
the random charging time is negative exponentially distributed with

the rate μ. ρ = λ

μ
denotes the traffic intensity or offered load. In

addition to the M/M/n/n Queue, we also adopt other three methods
to assign charging piles in Section IV.

IV. EXPERIMENTAL EVALUATION

Since the personal privacy protection brings collecting the private
vehicle driving data for analyzing and assessing public charging
demands with numerous constraints and barriers, we choose to utilize
the public trajectory data collected from the taxi cabs in Beijing for
building up and verifying our research work. Such alteration is made
based on the hypothesis that the travelers’/drivers’ behaviors remain
unchanged when switching to drive/take electric vehicles.

A. Dataset and Settings

1) Real Datasets: Road Networks: To assess the efficiency and
scalability of the proposed methods, we extract the road network from
Beijing. The bounding box is [(116.092, 40.117), (116.707, 39.685)],
which covers an area of 2, 520 km2 and contains 83, 917 vertices as
well as 110, 114 road segments.

Taxi Trajectories: The GPS trajectory dataset is generated by col-
lecting the driving data from 33, 000 taxicabs from Beijing during a
87-day period. The dataset contains 268, 791 trajectories (segmented
corresponding to the taxi orders).

Parking Lot Dataset: We extract the dataset of the public parking
lots from the government website with the information about name,
type, and address. There are 2, 087 public parking lots within the
selected demonstrative area.

2) Metrics: We suggest two metrics to evaluate the proposed
solutions.

• Coverage rate refers to the proportion of EVs that can get
charged to the total charging demands.

• Utilization rate represents the ratio of the time each charging
pile used per day to the total working time of the day.

B. Evaluation of Charging Station Placement

1) Efficiency Comparison: To evaluate the efficiency of the pro-
posed algorithms with a large-scale dataset, we compared our work
with two baselines within the selected demonstrative area. As shown
in Figure 1(a), CELF, LGDG, and LGEG are all better than the
conventional Lazy Greedy Algorithm. With the number of charging
stations increasing gradually, both LGDG and LGEG outperform
CELF significantly. With the amount of charging stations increasing,
the running time of CELF rises a lot, whereas the time cost of
our proposed algorithms keeps steady. Because CELF Algorithm tra-
verses all the trajectories covered by the placement A and the station
v∗, the number of trajectories needing traversing would increase
as the size of placement A enlarges. In contrast, our algorithms
only traverse the trajectories passing by the newly added station v∗
and thus get little impact when the size of placement A increases.
Moreover, as shown in Figure 1(b), LGEG gets better performance
than LGDG as it further narrows the traversing scope by eliminating
those trajectories on which the obtained benefit gain from placement
A is less than that from the newly added station v∗.

Fig. 1. Efficiency comparisons.

Fig. 2. Performance comparison for CSPL.

2) Performance Comparison for CSPL: In this section, we evaluate
the performance of our proposed algorithms of placing charging
stations in terms of the coverage rate and the utilization rate.
We assume that each trajectory is formed by one EV, and the average
speed of EV is 50km/h. Then, we can calculate the time cost of
each EV to reach charging stations along the trajectories. Besides, λ
denoting the mean arrival rate of EVs into the queuing system can be
calculated. For all the EVs within one CS, we assume their charging
time is negative exponentially distributed with the rate μ according
to the POI types that the current CS is close to. Table II lists the
average staying time of EVs at each type of POIs where charging
stations are located. We take the queuing theory model to calculate
the number of charging piles for each CS with the above mentioned
λ and μ and list the coverage rate and utilization rate of each method
for CSPL.

We compare six methods for CSPL problem with |A| = 200 (seen
in Figure 2. In the figure, RS represents the way to randomly select
the locations for charging stations, and TM refers to picking the first
charging stations through sorting the number of the covered trajec-
tories in descending order. Given MCL, MCW, and MCD discussed
above, MCL_MCW_MCD represents the multicriteria optimization
combining the three individual objectives. As shown in Figure 2,
our proposed methods outperforms RS and TM in terms of both
the coverage rate and the utilization rate. With the coverage rate
as the evaluation criterion, MCL could easily get a great reputation
because it tends to select the locations with relatively large coverage,
and it thus gets the best performance as illustrated in Figure 2(a).
Meanwhile, we also incorporate the utilization rate as a second
metric to highlight the improvement in the work. Through analyzing
the experimental results, we find that the method for multicriteria
optimization, i.e., MCL_MCW_MCD, plays the best performance
(seen in Figure 2(b)) because it synthesizes the solutions to MCL,
MCW, and MCD at the same time and suggests a trade-off among
the multiple objectives.

Authorized licensed use limited to: University of Southern California. Downloaded on December 04,2020 at 22:37:29 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: EFFICIENT DEPLOYMENT OF EV CHARGING INFRASTRUCTURE: SIMULTANEOUS OPTIMIZATION OF CSPL AND CPAS 5

TABLE II

THE DISTRIBUTION OF THE STAY TIME IN POIS

Fig. 3. The comparisons of coverage rate among various strategies of
charging pile assignment.

C. Evaluation of Charging Pile Assignment

In this section, we evaluate four methods of assigning charging
piles. TCA (Trajectory-based Charging pile Assignment) is the
assignment strategy based on the coverage ratio. The number of

charging piles assigned to C Si is according to Coverage(Vi)
Coverage(A) × N ,

where Coverage(Vi ) designates the number of trajectories passing
by C Si , and Coverage(A) represents the number of trajectories
covered by placement A, and N denotes the total number of charging
piles. DCA (charging Demands-based Charging pile Assignment)
represents the assignment strategy based on the coverage ratio of
charging demands MC D(Vi )

MC D(A) , and WCA (charging Willingness-based

Charging pile Assignment) represents the assignment strategy based
on the coverage ratio of charging willingness MC W (Vi)

MC W (A) . M/M/n/n

uses the queuing theory model to get the number of charging piles
for each CS.

Figure 3 states the coverage rate comparisons among TCA, DCA,
WCA, and M/M/n/n under the preset CSPL strategies. Figure 4 shows

Fig. 4. The comparisons of utilization rate among various strategies of
charging pile assignment.

the comparisons among the four methods of CPAS in terms of the
utilization rate. We find that the proposed method, i.e., M/M/n/n,
outperforms the other methods according to both Figure 3 and
Figure 4. Particularly, when the total number of charging piles is
less than 4000, our proposed method is much better than the others.
In reality, the initial number of charging piles should usually be small
due to the constrained budget. So it is usually recommended that
each CS is configured with ten charging piles. In such a situation,
M/M/n/n could improve the utilization rate by 10% over the other
methods, which proves that the proposed method has good prospects
in practice.

V. CONCLUSION

In this paper, we proposed a novel approach to efficiently deploy
electric vehicle charging infrastructure toward improving the conve-
nience and extending the cruising range of electric vehicles. Our main
contributions include: (1) the formulation of the five realistic charging
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objective functions exhibiting submodularity; (2) the effective
heuristic algorithms, i.e., LGDG and LGEG, to accelerate the
conventional algorithms for optimizing submodular functions under
large scale dataset; (3) the efficient solution to the multicriteria
optimization problem of CSPL; (4) the methods of assigning
charging piles for improving the piles’ service efficiency and feeding
heavier charging load during the service period. The experimental
results obtained with acting the research work with the real large-
scale datasets in Beijing indicates that our approach can provide
an effective and efficient deployment of electric vehicle charging
infrastructure.
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