CSCI 5980/8980: Spatial Enabled Artificial Intelligence
Assignment 1 (10 points)
Due Date: 2022/02/15 11:59:00 CST

1. Overview of the Assignment
With this assignment, you will learn to use existing spatial data to prepare feature vectors capturing geographic context to support spatial artificial intelligence tasks. You will use PostgreSQL with PostGIS and Apache Sedona (formerly GeoSpark) to perform spatial queries. You will compare their performance in terms of query efficiency using the same query tasks on both platforms. You can access the data and sample code on Google Drive.

2. Programming Requirements and Environment Settings
a. You must use SQL and Python to implement all tasks.
b. Programming Environment:
· JAVA version 1.8, Python 3.7, Pyspark 3.0.0, Sedona 1.1.1
· [Optional] You can use Conda to manage your programming environment.
$conda create --name [ENV] -y python=3.7
$conda activate [ENV]
$conda install -c conda-forge gdal==3.4.0
$conda install -c conda-forge pyspark==3.0.0
$pip install apache-sedona
Sedona Python requires two additional jar packages, sedona-python-adapter and geotools-wrapper, to work properly.[footnoteRef:1] Specifically, you need to put two jar packages[footnoteRef:2] under [YOUR PYTHON PATH]/site-packages/pyspark/jar/. [1: See http://sedona.incubator.apache.org/setup/install-python/] [2: We provide sedona-python-adapter-3.0_2.12-1.1.1-incubating.jar and geotools-wrapper-1.1.0-25.2.jar]

3. Assignment Datasets
This assignment will use two types of datasets.
a. Two sampled datasets of air quality sensor locations [download]
These datasets contain sensor IDs and locations (longitude and latitude in WGS84). One dataset contains more than 400 locations, and the other dataset has 10 locations. Both datasets are sampled PurpleAir sensor locations in California.
b. OpenStreetMap (OSM) data [download]
OpenStreetMap (OSM) is a crowd-sourced worldwide map dataset.[footnoteRef:3] This assignment will use OSM data as a proxy to describe geographic context of air quality sensor locations. You need to download the file [.osm.pbf] of California (see the screenshot below), which is a compressed file of the OSM California data. [3: See https://wiki.openstreetmap.org/wiki/Main_Page]

[image: Table

Description automatically generated]

4. Deliverables and Tasks
You need to turn in a zip file, named as [your_login_id]_assignment1.zip (all lowercase),[footnoteRef:4] e.g., lin00786_assignment1.zip, containing the following files: [4: Also the name of your email address, e.g., if your email address is lin00786@umn.edu, your id would be lin00786]

a. [REQUIRED] Code scripts: one SQL script named as main.sql, one Python script named as main.py
We provide skeletons of the two scripts in [main.sql] and [main.py], and you will complete the required code block.
The SQL script will be graded manually. The Python script will be automatically graded by running
$python main.py --input_file [INPUT FILE] --osm_table [OSM TABLE] --out_path [OUT PATH]
b. [REQUIRED] A result file named as geographic_features.csv
c. [REQUIRED] A readme document in Word describing the results, named as readme.docx
d. [OPTIONAL] You can include other Python scripts to support your programs (e.g., callable functions).

4.1. Task: Importing OSM data to PostgreSQL (PostGIS)
You need to import the OSM data (i.e., california-latest.osm.pbf) to PostgreSQL using the ogr2ogr tool and re-organize the imported tables for later use. Here are the steps:
· Download and install PostgreSQL (and the PostGIS extension)[footnoteRef:5] on your machine (see some installation screenshots in Appendix 1). Then you can create your own localhost server and database in PostgreSQL for this assignment. You can use PgAdmin to access and manage your PostgreSQL instance (Postico is recommended but only works for MacOS). You need to add the PostGIS extension by running CREATE EXTENSION postgis.[footnoteRef:6] [5: PostgreSQL downloads: https://www.postgresql.org/download/] [6: https://postgis.net/install/]

· Install GDAL[footnoteRef:7] and verify if ogr2ogr works by running $ogr2ogr. You will see the following screenshot if it succeeds. [7: https://gdal.org/]

[image: Text

Description automatically generated]
· Use ogr2ogr in GDAL to import the pbf file into PostgreSQL by running the following command (it will take a few minutes):
[image:]
You will see five tables (e.g., lines) imported in your database if it succeeds.
· You will use these tables to create three new tables (named as line_features, polygon_features, and point_features) for later use. The SQL queries has been provided for you in osm.sql. If you are interested, we use gen_SQL_cmd.py to generate these SQL queries. You can also modify gen_SQL_cmd.py to generate your own queries for later assignments (e.g., modifying selected geo-features). The goal is to select some representative geo-features for each geometry type (points, lines, polygons). You can simply copy/paste and run the SQL queries in osm.sql in your PgAdmin (this step is time-consuming, taking around 20 minutes on a 2017 MacBook Pro).
· The SQL queries in osm.sql will generate tables with five columns (see the screenshot below). The geo_feature column describes the original categories in OSM data (e.g., highway and waterway). The feature_type column describes the subclass of these categories. For example, highway can be primary, motorway, residential, etc.[footnoteRef:8] [8: See https://wiki.openstreetmap.org/wiki/Main_Page]

[image: Table

Description automatically generated]

4.2. Task: Creating spatial buffers for air quality sensor locations (3 points)
You will create spatial buffers with varying sizes using the ST_Buffer function.[footnoteRef:9] We will use spatial buffers with radii of 100, 500, and 1,000 meters in this assignment. [9: See ST_Buffer for PostGIS here: https://postgis.net/docs/ST_Buffer.html
]

· Note that the given locations are in “epsg:4326”, so you need to transform their geometries to a coordinate system with a meter unit.
· You need to implement this task using BOTH PostgreSQL (section 4.2.1) and Apache Sedona (section 4.2.2).

4.2.1. (1 point) Using PostgreSQL to create buffers. Here are the steps:
· Create a location table with the following schema:
[image: Text, application

Description automatically generated]
· Import the sampled datasets of air quality sensor locations (from section 3.a)
· Create a table with the following schema:
[image: Text

Description automatically generated]
· Compute and insert the buffers of size 100, 500 and 1,000 meters to the table

4.2.2. (2 points) Using GeoSpark to create buffers
· Complete the gen_buffers function in main.py
[image: Graphical user interface, text, application

Description automatically generated]

4.3. Task: Computing geographic features (5 points)
You will compute feature vectors capturing geographic features by spatially joining the created buffers from Task 4.2 and the OSM tables generated from Task 4.1.
· Specifically, you need to join the geometries of the created buffers and OSM data to calculate the aggregated number/length/area of the OSM geographic features within each buffer. For example, if the geometry type is “MultiPolygon”, the aggregation should be the summation of area sizes of all OSM geographic features within a buffer. You should use “meter” or “square meter” as your spatial units. For example, the left figure below shows a 200-meter buffer at Location A. The buffer intersects with five geographic features. The table below shows the desired output with the aggregated geographic features.
· You need to implement this task using BOTH PostgreSQL (section 4.3.1) and Apache Sedona (section 4.3.2).
·
[image: Diagram

Description automatically generated] [image: Table

Description automatically generated]

4.3.1. (1 point) Using PostgreSQL to compute geographic features
· Create a table with the following schema:
[image: Text

Description automatically generated]
· Compute and insert all generated geographic features into the table. You need to write the SQL queries for line, polygon, and line features separately.

4.3.2. (4 points) Using GeoSpark to compute geographic features
· Load the OSM tables from PostgreSQL into Spark DataFrame. We provide an example solution in main.py using pandas.[footnoteRef:10] To use the example solution, you need to create an .env file using the same format as env_example and add the database connection configuration (e.g., username and password). You need to describe your own method in the readme document if you choose not to use the example solution. [10: https://pandas.pydata.org/]

· Complete the gen_geographic_features function in main.py. You need to call this function three times on the three OSM tables (polygon, line, and point features) generated from Task 4.1. Each call will generate a folder containing a CSV file by using the function [.coaleasce(1).write.csv()] in main.py. You will report the running time for each call.
· After running your scripts for the three tables (polygon, line, and point features), you need to merge the outputs of polygon, line, and point features to geographic_features.csv with the same schema in section 4.2.1. We provide merge.py for this purpose.
[image: Graphical user interface, text, application, email

Description automatically generated]

5. Grading criteria
a. Your code should be runnable and be able to generate results correctly (that is, generating tables with the submitted SQL queries and generating geographic_features.csv with the submitted Python scripts successfully) to receive full points on Task 4.2 and Task 4.3 (a total of 8 points).
The SQL script will be graded manually. The Python code will be automatically graded by running
$python main.py --input_file [INPUT FILE] --osm_table line_features --out_path [OUT PATH]
$python main.py --input_file [INPUT FILE] --osm_table point_features --out_path [OUT PATH]
$python main.py --input_file [INPUT FILE] --osm_table polygon_features --out_path [OUT PATH]
$python merge.py
b. In the readme document, you should report the running time of completing Task 4.3 on each OSM table by testing different location datasets as the input file in a table below (1 point). You need to explain the comparison results in several sentences (no more than 300 words) (1 point).
	
	
	#locations = 400
	#locations = 10

	PostgreSQL
	Line
	
	

	
	Polygon
	
	

	
	Point
	
	

	Apache Sedona
	Line
	
	

	
	Polygon
	
	

	
	Point
	
	

Table: Time comparison using PostgreSQL and Apache Sedona
c. You can put any external libraries that are necessary to execute your code or other instructions that can help TA run your assignment.
Appendix
1. PostGIS extension installation via Stack Builder (you should see the following steps)
[image: Graphical user interface, application

Description automatically generated] [image: Graphical user interface, application

Description automatically generated]
[image: Graphical user interface, text, application

Description automatically generated] [image: Graphical user interface, application

Description automatically generated]
image1.jpeg
Sub Regions

Click on the region name to see the overview page for that region, or select one of the f

Sub Region Quick Links
-osm.pbf .shpzip .osm.bz2
Alabama osm.pbf] (92 MB) [.osm.bz2]

Alaska osm.pbf] (112 MB)

Arizona (190 MB)
Arkansas osm.pbf] (60 MB
California (972 MB)

Colorado osm.pbf] (220 MB)

image2.jpeg
(spatial-env) Yijuns-MacBook-Pro:~ yijunlin$ ogrZogr
Usage: ogrzogr [--help-general] [-skipfailures] [-append] [-update]
[-select field list] [-where restricted_where|efilenane]
[-progress] [-sql <sql statement>|efilenane] [-dialect dialect]
[-preserve_fid] [-fid FID] [-limit nb_features]
[-spat xmin ymin xnax ymax] [-spat_srs srs_def] [-geonfield field]
[-a_srs srs_def] [-t_srs srs_def] [-s_srs srs_def] [-ct string]
[~ format_name] [-overwrite] [[-dsco NAME=VALUE] ...]
dst_datasource_name src_datasource_nane
[-1co NAME=VALUE] [-nln name]
[-nlLt type|PROMOTE_TO_MULTT | CONVERT_TO_LINEAR | CONVERT_TO_CURVE]
[-dim XYIXYZIXYMIXYZMIlayer_dim] [layer [layer ...1]

image3.jpeg
(base) yijunlinGymeiieemiess mimlm -~ % ogrZogr -f PostgreSQL PG:"dbname=[YOUR_DB_NAME]
user=[YOUR_USERNAME] password=[YOUR_PASSWORD]" -nlt PROMOTE_TO_MULTI [PBF_FILE_PATH]

image4.jpeg
oid

1856

2022

2026

2031

highway
highway
highway

highway

feature_type

residential
motorway
residential

track

wkb_geometry
SRID=4326 MULTILINESTRING(
33.7380855,-115.8126539 33
SRID=4326MULTILINESTRING(
35.0786864,-116.3982129 35.
SRID=4326 MULTILINESTRING(
34.9487279,-116.8650706 34.
SRID=4326;MULTILINESTRING{(
34.9483649,-116.864482 34.9

image5.jpeg
DROP TABLE IF EXISTS sample_locations;

CREATE TABLE sample_locations (
sensor_id INTEGER PRIMARY KEY,
Ton DOUBLE PRECISTON NOT NULL,
1lat DOUBLE PRECISION NOT NULL);

image6.jpeg
DROP TABLE IF EXISTS sample_location_buffers;
CREATE TABLE sample_location_buffers(

gid BIGSERTAL PRINARY KEY,

sensor_id INTEGER,

Ton DOUBLE PRECISTON NOT NULL,

lat DOUBLE PRECISTON NOT NULL,

buffer_size INTEGER NOT NULL,

buffer geonetry(Polygon, 4326) NOT NULL);

CREATE INDEX “sample_location_buffers_buffer_idx" ON sample_location_buffers USING gist(buffer);

image7.jpeg
def gen_buffers(input_file, buffer_sizes):

point_df = spark.read.option("header", True).schema(schema_point).csv(input_file)
point_df.create0rReplaceTempView("points")

complete the function to generate buffers
buffer_df = [Code Block]

buffer_df.createOrReplaceTempView("buffers")
buffer_df.show()

image8.jpeg
~— Highway - Pedestrian
== Highway - Motorway
B Landuse - Green land
M Landuse - Water area
® Building - House

image9.jpeg
Sensor

Geometry

Buffer

Geo

Feature

GIb | Type Size | feature ype | e
1 A line 200 | Highway | Pedestrian | 43
2 A line 200 | Highway | Motorway | 200
3 A polygon | 200 | Landuse | Greenland | 740
4 A polygon | 200 | Landuse | Waterarea | 650
5 A point 200 | Building | House 6

image10.jpeg
DROP TABLE IF EXISTS geographic_features;
CREATE TABLE geographic_features(
g9id BIGSERTAL PRINARY KEY,
sensor_id INTEGER NOT NULL,
geon_type TEXT NOT NULL,
geo_feature TEXT NOT NULL,
feature_type TEXT NOT NULL,
buffer_size INTEGER NOT NULL,
value DOUBLE PRECISION)

image11.jpeg
def gen_geographic_features(osm_table):

osm_df = pd.read_sql(f"select geo_feature, feature_type, wkb_geometry from {osm_table}", engine)
osm_df = spark.createDatafrane (osm_df).persist()

osm_df.create0rReplaceTenpView("osn")

print(osm_df.rdd.getNunPartitions())

compute geographic features for different geom
if osm_table == 'polygon_features':
geographic_feature_df = [Code Blockl

elif osm_table = 'line_features':
geographic_feature_df = [Code Blockl

elif osm_table == "point_feature:
geographic_feature_df = [Code Blockl

else:
raise NotImplementedError

start_time = time. tine()
geographic_feature_df.coalesce(1).write.csv(f'{args.out_path}/{osm_table} {int(time.tine()/1000)}",
heade;

print(time.tine() - start_time)
print(geographic_feature_df)

image12.jpeg
Setup - PostgreSQL

@ E DB Welcome to the PostgreSQL Setup Wizard.

&

PostgreSQL

Cancel < Back Next >

image13.jpeg
Stack Builder 4.2.1

Welcome to Stack Builder!

This wizard will help you install additional software to
complement your PostgreSQL or EnterpriseDB Postgres Plus
installation.

To begin, please select the installation you are installing software
for from the list below. Your computer must be connected to the
Internet before proceeding.

PostgreSQL 14 on pc v

Proxy servers

Next > Cancel

image14.jpeg
Stack Builder 4.2.1

Please select the applications you would like to install.

@ - Categories

P Add-ons, tools and utilities

P Database Drivers

P Database Server

P Registration-required and trial products

P Spatial Extensions
v

PostGIS “spatially enables” the PostgreSQL server, allowing it to
be used as a backend spatial database for geographic
information systems (GIS). PostGIS follows the OpenGIS “Simple
Features Specification for SQL” and has been certified as
compliant with the “Types and Functions” profile. Packaged by

< Back Next > Cancel

image15.jpeg
Setup PostGIS

@ EDB Welcome to the PostGIS Setup Wizard.

&

PostgreSQL

Cancel < Back Next >

