
CSCI 5980/8980: Spatial Enabled Artificial Intelligence
Assignment 1 (10 points)

Due Date: 2022/02/15 11:59:00 CST

1. Overview of the Assignment
With this assignment, you will learn to use existing spatial data to prepare feature vectors capturing
geographic context to support spatial artificial intelligence tasks. You will use PostgreSQL with PostGIS
and Apache Sedona (formerly GeoSpark) to perform spatial queries. You will compare their performance
in terms of query efficiency using the same query tasks on both platforms. You can access the data and
sample code on Google Drive.

2. Programming Requirements and Environment Settings
a. You must use SQL and Python to implement all tasks.

b. Programming Environment:

o JAVA version 1.8, Python 3.7, Pyspark 3.0.0, Sedona 1.1.1

o [Optional] You can use Conda to manage your programming environment.

$conda create --name [ENV] -y python=3.7

$conda activate [ENV]

$conda install -c conda-forge gdal==3.4.0

$conda install -c conda-forge pyspark==3.0.0

$pip install apache-sedona

Sedona Python requires two additional jar packages, sedona-python-adapter and geotools-wrapper,
to work properly.1 Specifically, you need to put two jar packages2 under [YOUR PYTHON PATH]/site-
packages/pyspark/jar/.

3. Assignment Datasets
This assignment will use two types of datasets.

a. Two sampled datasets of air quality sensor locations [download]

These datasets contain sensor IDs and locations (longitude and latitude in WGS84). One dataset contains
more than 400 locations, and the other dataset has 10 locations. Both datasets are sampled PurpleAir
sensor locations in California.

1 See http://sedona.incubator.apache.org/setup/install-python/
2 We provide sedona-python-adapter-3.0_2.12-1.1.1-incubating.jar and geotools-wrapper-1.1.0-25.2.jar

b. OpenStreetMap (OSM) data [download]

OpenStreetMap (OSM) is a crowd-sourced worldwide map dataset.3 This assignment will use OSM data
as a proxy to describe geographic context of air quality sensor locations. You need to download the file
[.osm.pbf] of California (see the screenshot below), which is a compressed file of the OSM California data.

4. Deliverables and Tasks
You need to turn in a zip file, named as [your_login_id]_assignment1.zip (all lowercase), 4 e.g.,
lin00786_assignment1.zip, containing the following files:

a. [REQUIRED] Code scripts: one SQL script named as main.sql, one Python script named as main.py

We provide skeletons of the two scripts in [main.sql] and [main.py], and you will complete the
required code block.

The SQL script will be graded manually. The Python script will be automatically graded by running

$python main.py --input_file [INPUT FILE] --osm_table [OSM TABLE] --out_path [OUT PATH]

b. [REQUIRED] A result file named as geographic_features.csv

c. [REQUIRED] A readme document in Word describing the results, named as readme.docx

d. [OPTIONAL] You can include other Python scripts to support your programs (e.g., callable functions).

4.1. Task: Importing OSM data to PostgreSQL (PostGIS)

You need to import the OSM data (i.e., california-latest.osm.pbf) to PostgreSQL using the ogr2ogr tool and
re-organize the imported tables for later use. Here are the steps:

o Download and install PostgreSQL (and the PostGIS extension) 5 on your machine (see some
installation screenshots in Appendix 1). Then you can create your own localhost server and
database in PostgreSQL for this assignment. You can use PgAdmin to access and manage your
PostgreSQL instance (Postico is recommended but only works for MacOS). You need to add the
PostGIS extension by running CREATE EXTENSION postgis.6

3 See https://wiki.openstreetmap.org/wiki/Main_Page
4 Also the name of your email address, e.g., if your email address is lin00786@umn.edu, your id would be lin00786
5 PostgreSQL downloads: https://www.postgresql.org/download/
6 https://postgis.net/install/

o Install GDAL 7 and verify if ogr2ogr works by running $ogr2ogr. You will see the following
screenshot if it succeeds.

o Use ogr2ogr in GDAL to import the pbf file into PostgreSQL by running the following command

(it will take a few minutes):

You will see five tables (e.g., lines) imported in your database if it succeeds.

o You will use these tables to create three new tables (named as line_features, polygon_features,
and point_features) for later use. The SQL queries has been provided for you in osm.sql. If you are
interested, we use gen_SQL_cmd.py to generate these SQL queries. You can also modify
gen_SQL_cmd.py to generate your own queries for later assignments (e.g., modifying selected
geo-features). The goal is to select some representative geo-features for each geometry type
(points, lines, polygons). You can simply copy/paste and run the SQL queries in osm.sql in your
PgAdmin (this step is time-consuming, taking around 20 minutes on a 2017 MacBook Pro).

o The SQL queries in osm.sql will generate tables with five columns (see the screenshot below). The
geo_feature column describes the original categories in OSM data (e.g., highway and waterway).
The feature_type column describes the subclass of these categories. For example, highway can
be primary, motorway, residential, etc.8

4.2. Task: Creating spatial buffers for air quality sensor locations (3 points)

You will create spatial buffers with varying sizes using the ST_Buffer function.9 We will use spatial buffers
with radii of 100, 500, and 1,000 meters in this assignment.

o Note that the given locations are in “epsg:4326”, so you need to transform their geometries to a
coordinate system with a meter unit.

7 https://gdal.org/
8 See https://wiki.openstreetmap.org/wiki/Main_Page
9 See ST_Buffer for PostGIS here: https://postgis.net/docs/ST_Buffer.html

o You need to implement this task using BOTH PostgreSQL (section 4.2.1) and Apache Sedona
(section 4.2.2).

4.2.1. (1 point) Using PostgreSQL to create buffers. Here are the steps:

o Create a location table with the following schema:

o Import the sampled datasets of air quality sensor locations (from section 3.a)

o Create a table with the following schema:

o Compute and insert the buffers of size 100, 500 and 1,000 meters to the table

4.2.2. (2 points) Using GeoSpark to create buffers

o Complete the gen_buffers function in main.py

4.3. Task: Computing geographic features (5 points)

You will compute feature vectors capturing geographic features by spatially joining the created buffers
from Task 4.2 and the OSM tables generated from Task 4.1.

o Specifically, you need to join the geometries of the created buffers and OSM data to calculate the
aggregated number/length/area of the OSM geographic features within each buffer. For example,
if the geometry type is “MultiPolygon”, the aggregation should be the summation of area sizes of
all OSM geographic features within a buffer. You should use “meter” or “square meter” as your
spatial units. For example, the left figure below shows a 200-meter buffer at Location A. The buffer
intersects with five geographic features. The table below shows the desired output with the
aggregated geographic features.

o You need to implement this task using BOTH PostgreSQL (section 4.3.1) and Apache Sedona
(section 4.3.2).

o

4.3.1. (1 point) Using PostgreSQL to compute geographic features

o Create a table with the following schema:

o Compute and insert all generated geographic features into the table. You need to write the SQL

queries for line, polygon, and line features separately.

4.3.2. (4 points) Using GeoSpark to compute geographic features

o Load the OSM tables from PostgreSQL into Spark DataFrame. We provide an example solution in
main.py using pandas.10 To use the example solution, you need to create an .env file using the
same format as env_example and add the database connection configuration (e.g., username and
password). You need to describe your own method in the readme document if you choose not to
use the example solution.

o Complete the gen_geographic_features function in main.py. You need to call this function three
times on the three OSM tables (polygon, line, and point features) generated from Task 4.1. Each
call will generate a folder containing a CSV file by using the function [.coaleasce(1).write.csv()] in
main.py. You will report the running time for each call.

o After running your scripts for the three tables (polygon, line, and point features), you need to
merge the outputs of polygon, line, and point features to geographic_features.csv with the same
schema in section 4.2.1. We provide merge.py for this purpose.

10 https://pandas.pydata.org/

5. Grading criteria
a. Your code should be runnable and be able to generate results correctly (that is, generating tables with

the submitted SQL queries and generating geographic_features.csv with the submitted Python scripts
successfully) to receive full points on Task 4.2 and Task 4.3 (a total of 8 points).

The SQL script will be graded manually. The Python code will be automatically graded by running

$python main.py --input_file [INPUT FILE] --osm_table line_features --out_path [OUT PATH]

$python main.py --input_file [INPUT FILE] --osm_table point_features --out_path [OUT PATH]

$python main.py --input_file [INPUT FILE] --osm_table polygon_features --out_path [OUT PATH]

$python merge.py

b. In the readme document, you should report the running time of completing Task 4.3 on each OSM
table by testing different location datasets as the input file in a table below (1 point). You need to
explain the comparison results in several sentences (no more than 300 words) (1 point).

 #locations = 400 #locations = 10

PostgreSQL
Line

Polygon
Point

Apache Sedona
Line

Polygon
Point

Table: Time comparison using PostgreSQL and Apache Sedona

c. You can put any external libraries that are necessary to execute your code or other instructions that
can help TA run your assignment.

Appendix
1. PostGIS extension installation via Stack Builder (you should see the following steps)

