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What is Spatial Artificial
Intelligence?



https://datareportal.com/global-digital-overview
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Satellites Skyrocket

Past, Present, and Future Satellites Launched

2009-

2019-

satellites will be
launched yearly by 2028.

@ Source: Euroconsult, 2019

https://www.visualcapitalist.com/visualizing-all-of-earths-satellites/



Crunch time in France
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Impact on the global geospatial industry HIGH
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Future Trends in geospatial information management: the five to ten year vision — Third Edition, August 2020



What is Artificial Intelligence?

Artificial Intelligence T

Broadly speaking, any

Discovering previously unknown

technologies having knowledge from BIG data

human-like capabilities
to perform certain tasks
Machine Learning

(Machine) Making inference using
available data without explicit rules




Al Tasks - Descriptive Analysis

Detect previously unknown patterns in data

e.g., split social networks into groups

https://en.wikipedia.org/wiki/Social_network_analysis#/media/File:Graph_betweenness.svg



Al Tasks - Predictive Analysis

Predict unobserved data values using computer models
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e.g., by learning some model parameters from some data to predict future stock prices



Al Tasks - Prescriptive Analysis

Examinate “What-If” scenarios and suggest actions
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Patterns vs. Models

https://en.wikipedia.org/wiki/Cluster_analysis#/media/File:KMeans-Gaussian-data.svg 1

https://en.wikipedia.org/wiki/Machine_learning#/media/File:Linear_regression.svg



Data Mining Examples

* If you buy beer, you highly likely will buy diapers (association rules)

* People who have a similar profile as you like to watch these shows
(recommendation systems)

Top Picks for Ohyeah

¥ ¥ LosT
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Machine Learning Examples

Face Detection (Computer Vision) Machine Translation (Natural Language Processing)

Sauteed king bolete with m;
Ri_lﬂé% HETO, FHm

https://en.wikipedia.org/wiki/Facial recognition system#/media/File:Face detection.jpg 13
https://en.wikipedia.org/wiki/Machine translation#/media/File:Stir Fried Wikipedia.jpg



https://en.wikipedia.org/wiki/Facial_recognition_system
https://en.wikipedia.org/wiki/Machine_translation

What is Spatial Al?

Spatial Artificial Intelligence

Al technologies that handle spatial data, typically
associated with real-world applications

Data Mining Machine Learning Geo-Al

Spatial Statistics Geographic Information Science

14



Spatial Al Example

Air Quality Prediction
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Lin, Y., Chiang, Y. Y., Franklin, M., Eckel, S. P., & Ambite, J. L. (2020, November). Building Autocorrelation-Aware Representations for Fine-Scale Spatiotemporal Prediction. In ICDM) (pp. 352-361)


https://www2.purpleair.com/
https://gispub.epa.gov/airnow/

Spatial Al Example

Spatial colocation mining

Co-location Patterns — Sample Data
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Huang, Y., Shekhar, S., & Xiong, H. (2004). Discovering colocation patterns from spatial data sets: a general approach. IEEE Transactions on Knowledge and data engineering, 16(12), 1472-1485.
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Spatial Al Example

Object detection from overhead imagery

17
Duan, W., Chiang, Y.-Y., Leyk, S., Uhl, J. H., and Knoblock, C. A. (December 2021). Guided Generative Models using Weak Supervision for Detecting Object Spatial Arrangement in Overhead Images. IEEE Big Data (accepted), online



What are Spatial Data?



Spatial Data

* Data that can spatially
referenced, e.g.,

* Time series from fixed-site
sensors (e.g., traffic, air

quality)

* Remotely sensed data (e.g.,

satellite imagery)

* Geotagged photos and
tweets

* Documents mentioning
location entities
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Spatial Data Do Not Have to be Geo Data

* Digital Pathology Example POINT CONTAINMENT
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Rong, Y., Durden, D. L., Van Meir, E. G., & Brat, D. J. (2006).
‘Pseudopalisading’necrosis in glioblastoma: a familiar morphologic feature that links Fox, Geoffrey & Qiu, Judy & Crandall, David & von Laszewski, Gregor & Jha, Shantenu & Wang, Fusheng &
vascular pathology, hypoxia, and angiogenesis. Journal of Neuropathology & Marathe, Madhav & Paden, J. & Cheatham, Tom & Beckstein, Oliver. (2016). Datanet: CIF21 DIBBs: Middleware 20

Experimental Neurology, 65(6), 529-539. and High Performance Analytics Libraries for Scalable Data Science NSF14-43054 Progress Report.



What does “spatially referenced” mean?

Spatial Coordinates
e.g., latitude and longitude; X and Y
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https://en.wikipedia.org/wiki/Geographic_coordinate_system#/media/File:Latitude_and_longitude_graticule_on_a_sphere.svg
https://en.wikipedia.org/wiki/Cartesian_coordinate_system#/media/File:Cartesian-coordinate-system.svg
https://en.wikipedia.org/wiki/World_Geodetic_System#/media/File:WGS_84_reference_frame_(vector_graphic).svg
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Spatial Data Representations — Raster Data

Probability of precipitation

https://blog.crunchydata.com/blog/postgis-raster-and-crunchy-bridge

22



Spatial Data Representations — Vector Data

https://saylordotorg



Spatial Data Management

 Spatial Databases

* Support spatial data manipulations using SQL
like languages

* Require a relational database engine
* e.g., PostGIS (SF-SQL)

e Spatial Big Data Platforms

» Support highly parallelized spatial data
manipulations

* Require a Big Data processing platform
* e.g., GeoMESA + Spark (MapReduce)

ST R

geomesa

24



What Make Spatial Data Special?



Spatial Autocorrelation

Nearby houses have similar prices
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Spatial Non-stationarity

Relationships between variables can change over space
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e.g., air quality near highway -394 can be very different depending on their locations



Modifiable Areal Unit Problem

Scale Effect

https://gisgeography.com/maup-modifiable-areal-unit-problem/
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Modifiable Areal Unit Problem

Zonal Effect

https://gisgeography.com/maup-modifiable-areal-unit-problem/
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Modifiable Areal Unit Problem

Gerrymandering and Redistricting

30

al-unit-problem/

https://gisgeography.com/maup-modifiable-are



Spatial Statistics



Geostatistical Data Analysis

* Data that vary continuously
over space, but measured
only at discrete locations

* Explore the spatial pattern
in the observations

* Quantify the spatial pattern
with a function

Making predictions
accounting for spatial
structure
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Areal Data Analysis

* Understanding the linkages between areal units
» e.g., if areas closer to each other are more related, how strong is

this patter?

equal-interval vs quantile cut points

Crude birth rate: United States, 2000

Births per
1,000 population

-

10.8 - 13.0 13.1-14.0 14.0 - 14.5 14.7 - 15.6 16.8-21.9

Monomier, N. Lying with Maps. Statistical Science 2005, 20(3) 215222.

Crude birth rate: United States, 2000
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Point Pattern Analysis

A cluster of three V-1s near a railway line in Lewisham, south London.
Patterns like these motivated Clarke to test whether their distribution
was random. (a) A contemporary aerial photograph of the V-1 sites,
showing the large radius of destruction of houses around the bomb
sites (© IWM, catalogue no. CH 15109). (b) The same region from the
LCC bomb damage maps4 (p. 162), showing the three V-1 hits (black
circles). Damage to houses is coded by colour, with black indicating
total destruction. (c) The same region in the Google Maps layer (hit
locations V1.509-V1.511).

https://rss.onlinelibrary.wiley.com/doi/10.1111/j.1740-9713.2019.01315.x

Is there a regular or clustering
pattern in the points?

Are points closer together than
they would be by chance?

Are the points more regularly
spaced than they would be by
chance?

Can we define a point process
that our events follow?

34



Spatial Data Analytic Example

Housing price estimate
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K-Nearest Neighbors

* 9 immediate neighbors

* (360+323+367+368+411+369+38
6+382+397)/9 = 373.66




Inverse Distance Weighting

Point observations:
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KNN & IDW

* IDW, p=2 _

w; (X) =
\p
Weight = 1 for immediate neighbors d(x, xl)

360+323+367+368+411+369+386+382+397
Weights = 1/4 for two step neighbors

1/4(401+326+386+416+338+373+377+415+393+368+
350+360)

Sum of Weights = 1*9 + %4*12 =12
4488.75/12 = 374

* Recall K-Nearest Neighbors
373.66
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Will either KNN or IDW work here?
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Will either KNN or IDW work here?
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What Matters When Dealing with Spatial Data?

A
Modeling Spatial and Temporal Dependencies

Data-driven Al methods
Spatial statistics

Spatial modeling

vy )
% Spatial analysis
7 7
% %
. v
o3 o
SIS Storing and
& § Managing Spatial
c -
g o Data
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Unique Spatial
Data Properties
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This Course



Course Themes

* Explore ways to store and manage spatial data, including
* Spatial databases
* Big Data platforms
* (if we have time) Ontology and Knowledge Graph

* Look into how deep learning & data mining technologies solve real-
world problems utilizing the unique spatial data properties, including
topics in

* Location time-series data mining (e.g., air quality prediction and trajectory
mining)
* Computer vision (e.g., object detection from overhead imagery)

* (if we have time) Natural language processing (e.g., toponym detection from
documents),



Smarter Al

Data-driven
technologies that can
incorporate prior
knowledge derived
from spatial data

r-----------------

- Inference Equation

What | UL What | What |
[ ]
Read kd Know = Infer

N N N

Use quotes from the Use background Put “two and two
text and note page knowledge and together” and make
number for future prior experiences a conclusion about

reference. from your own life. the story.

https://www.teacherspayteachers.com/Product/Making-Inferences-Inference-Equation

Poster?utm_sour

ce=sendgrid&utm_medium=email&utm_campaign=post_purchase_confirmation_control&utm_content=01%2F12%2F2022



Prerequisites

* Programming language
* Python
e Basic understanding of machine learning
* (We will) Focus on deep learning with PyTorch

* Basic understanding of databases
e Some familiarity with SQL



Course Tools

* We will provide some background of these tools, but it will be fast
paced.
* Postgres + PostGIS
* GeoMESA + Spark
* PyTorch



(Your) Course Work

* Five Homework Assignments (50%, 10% each)
* No regrading
* One-week late penalty — 20%; 0 points after one week

* Free five-day extensions

* You can use these five days on homework however you want until the last day of the
class

* No more extension days will be given for any reason
* You need to let your TA know if you are using free days when you submit your homework

* Weekly Quizzes (30%)
* Final project (20%)



Homework Assignments (tentative)

e Using GeoMesa + Spark for efficient spatial data join & aggregation
 Air quality prediction using time-series clustering and random forest

* Road extraction from satellite imagery using deep learning models
and existing contextual data

 Air quality prediction using deep learning models and spatial
heuristics

e Car detection from satellite imagery using deep learning models and
prior knowledge



Final Project Guidelines

* 1 or 2 people, with the following deliverables:
* Proposal presentation (submit slides for grading)
* Final project presentation (submit slides for grading)
* Final report (4 page maximum)

* MS/Senior Undergrad Students

A comparison of selected state-of-the-art methods for solving a
spatial Al problem (e.g., object detection from satellite imagery)

* MS/PhD Students
Develop a complete research work, which could be related to your

research direction



Presentation Guidelines

* Project proposal 10 mins

* Final project presentation 15 mins
* Your presentations need to address the following questions:

“What is the project trying to do?”,

“How is it done today, and what are the limits of current practice?”,
“What is your approach, and what is new in your approach?”,
“Who cares? If you succeed, what difference will it make?”,

“How do you know if your approach is successful?”, and

“What are the future extensions?”

This is the modified version of the famous “Heilmeier Catechism”: http://www.darpa.mil/work-
with-us/heilmeier-catechism



Course Grades

Grades will range from A through F. The following is the breakdown for grading:
94-100=A 74-76=C

90-93=A- 70-73=C-

87-89=B+ 67-69=D+

84-8=B 64-66=D

80-83=B- 60-63=D-

77—-79=C+ Below60isanF
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Course Staff

* TAs:
* Yijun Lin, lin00786@umn.edu
e Zekun Li, [i002666@umn.edu

» Office Hours:
* Instructor: Wednesdays after class
* TAs: See Piazza for TA office hours and locations



Course Logistics

e Course websites:
* https://yaoyichi.github.io/spatial-ai.html
* Material distributions: e.g., lecture slides (same day after the lecture)
* https://piazza.com/class/ky91axj4suo9v
* Discussions
* Canvas
* Grading, assignment submission, etc.
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Communications

e Discussion board on Piazza:

* Use the discussion board for all questions and public communication with the

course staff
(\ a post on the discussion board

HOW TO WRITE AN-E=MAtL—To—YOoUuR-
INCTRUCTCR CR T.A.

MY NAME 15 NOT

VE?’)R \.{;’UDEW From: Student sggg‘a;uéé’;%
UGE A PROPER To: Instructor/TA ALWAYS CONGULT:
GREETING! A; THE SYLLABUS
\ B) COMMON SENGE
X hey " C) THE SYLLABUS
OMG, WHAT ARE
Vo0 S mencee! lol)when i ffice huors? T ONLY Tk,
UL ! 3
AL SaECE ol,)when is your office huors? :SEC%CTO/
WAS ENOUGH — ) - _ PELL CuECic/
BADWIT™. [N btw,)where ig'you’re)office? %%mﬁ
Of
s on e "
THG - memy
AND WE ARE NOT i ' ARAAUHH!! TS N THE ®
FRENDS. 1 : oW DI You SYLLABUS!!! ]
O e GRADUATE e o
WGH SCHoOL!? 3
v
o
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Please do not email us unless...

* We will post course announcements to Piazza (make sure you check it
regularly).

* Emails:

* Do not use emails unless it’s personal!
AVERAGE TIME SPENT COMPOSING ONE E-MAIL

PROFESSORS: 1.3 SECONDS GRAD STUDENTE: 1.3 DAYS

DEAR (?) PROF. oMY,
YES. Do m. | WAS WONDERING IF PERHAPS YOU MIGHT HAVE
(SEND) POSSELY GOTTEN THE CHANCE TO POTENTIALLY

:
8
E
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Readings

e Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets
* Cambridge University Press, 2012
* Available free at: http://www.mmds.org/
 Shashi Shekhar and Sanjay Chawla, Spatial Databases: A Tour
* Prentice Hall, 2003 (ISBN 013-017480-7)
* http://www.spatial.cs.umn.edu/Book/
* lan Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning

* MIT Press, 2016
* Available free at: https://www.deeplearningbook.org/

* Additional papers


https://www.deeplearningbook.org/

To-Do ltems

 Download the online textbook and readings

* Install Spark and Postgres (plus PostGIS) on your machine
* Signup for Piazza

"STUDY FINDS 50% OF
11}

OOK AT THISH PEOPLE BORED BY

& STATISTICS."

iCyanide and Happiness © Explosm.net
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@ @ These materials are released under a CC-BY
License

https://creativecommons.org/licenses/by/2.0/

You are free to:

Share — copy and redistribute the material in any medium or format Artwork taken from
Adapt — remix, transform, and build upon the material other sources is
for any purpose, even commercially. acknowledged
The licensor cannot revoke these freedoms as long as you follow the license terms. where it appears.
Artwork that is not
Under the following terms: acknowledged is by
Attribution — You must give appropriate credit, provide a link to the license, the quthor
and indicate if changes were made. You may do so in any reasonable manner,

but not in any way that suggests the licensor endorses you or your use.

Please credit as: Chiang, Yao-Yi Introduction to Spatial Artificial Intelligence. Available from
https://yaoyichi.github.io/spatial-ai.html

If you use an individual slide, please place the following at the bottom: “Credit:
https://yaoyichi.github.io/spatial-ai.html

We welcome your feedback and contributions.

Credit: http://www.datascience4all.org/




