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What are spatial AI methods? 

• Machine learning & data mining 
methods generally assume 
independent and identically 
distributed random variables – i.i.d. 

• But spatial data are not i.i.d. 
• Auto-correlation

• Nearby things are similar

• Spatial non-stationarity
• Models are difficult to generalize

• And more…
Nearby houses have similar prices
Air quality near highway I-394 can be very different 
depending on their locations

How do we use these unique 
spatial data properties to improve 
machine learning models?

Bob is going to 
help us summarize 
the presentation 
along the way!



Why do we care?

• Location is the key to link various types 
of data
• e.g. can provide context-rich annotated 

(training) data (if we do it correctly)

Data scale/representation conflict

https://ai.facebook.com/blog/mapping-the-world-to-
help-aid-workers-with-weakly-semi-supervised-learning/ Label road locations on imagery with OpenStreetMap data

“By using the data in OSM, we were able to 
collect more than 100 million labeled 
examples to add to our training data set.”
“However, using OSM data for labels 

presented several challenges that required 
novel approaches to overcome.”

Facebook Map with AI

Positional offsets: 
buildings are not aligned
&
Content inconsistency:
One building vs. multiple 

USGS Railroads

USGS historical 
topo. map

https://ai.facebook.com/blog/mapping-the-world-to-help-aid-workers-with-weakly-semi-supervised-learning/


What are we building?

Real-World Problems & Data
Impact: Tech. Transfer & 
Open Source Tools In-Use

End-to-End Data Analytics Systems
• DeepLATTE: Air Quality Prediction & Forecasting Framework
• Strabo & mapKurator: Map Processing Platform
• ADMS: Transportation Data Analytics Platform (joint work 

with USC IMSC)

• …

Fundamental Research

ACM SIGSPATIAL, ACM KDD, IEEE International Conference on Data Mining, IEEE BigData, IEEE Mobile 
Data Management, Extended Semantic Web Conference, International Journal of Geographical 
Information Science, Knowledge-Based Systems

• Health
• Transportation
• Social Sciences



Building Autocorrelation-Aware Representations 
for Fine-Scale Air Quality Prediction

Lin et al., 2020 (IEEE International Conference on Data Mining)



Motivation
Air quality monitoring 
locations are limited and 
unevenly distributed.

Traditional spatial interpolation methods (e.g., IDW –
inverse distance weighting, Kriging) produce smooth 
results over the space.

https://airnow.gov/

The air quality in the entire city 
of Los Angeles is the same 
everywhere?! That can’t be right.

https://airnow.gov/


Not suitable for exposure tracking
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IDW Prediction

Spatial interpolation methods do not 
reflect local PM2.5 spatial variations!



What we need:
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Air quality prediction that 
reflect the environment impact

Fine-scale predictions help me track 
accurate PM2.5 exposure from my 
daily walks!



Hypothesis

• Environmental characteristics significantly impact air quality (e.g., PM2.5)

Source: [Liu et al., 2016]



Challenges

• How to learn from thousands of features describing the environmental 
characteristics with only sparse and unevenly distributed observations

• How to jointly model spatiotemporal effects

9 am

Wind blowing towards North East

10 am

Existing approaches either require expert 
knowledge or does not deal with space and 
time together and cannot handle sparse and 
unevenly distributed observations
(e.g., [Briggs et al. 1997; Zheng et al. 2013; Liu 
et al., 2016; Lin et al. 2017])



• Learn from thousands of features describing the environmental characteristics
• Learn to jointly model spatiotemporal effects
• Learn from sparse and unevenly distributed observations

We build DeepLATTE

Road length

Temperature

…
 …

Enforcing Local 
Embeddings to be 

Similar

Enforcing 
Autocorrelation 

Pattern

Leveraging spatial properties 
to improve embeddings

Feature 
Selection

Jointly Learning 
Spatiotemporal 

Effects

Creating initial environmental 
characteristics embeddings



𝑊

𝐻 Grid Map

Humidity

Len(Primary Roads) 
Area(Industry) 

Temperature

…

Primary roadGreen land

• Input: multi-dimension matrix
𝑋 = (𝐹,𝐻,𝑊)

- Each cell in X contains 𝐹 = 𝐹!, 𝐹" , describing the 
environment

- 𝐹! is dynamic (e.g., weather) and 𝐹" is static (e.g., roads)
𝑌 = (𝑂,𝐻,𝑊)

- Each cell in Y contains 𝑂, the air quality observation, 
dimension=1

- Many empty cells (limited observations)

Formally

𝑋("#$!%&), … , 𝑋(")

𝑌(")
Exploit spafal data
properfes to refine 𝑍

𝑍(")

(𝑌(")

Create initial embeddings 𝑋 ⇒
(
𝑍

𝑍 is the embedding describing 
environment 

Make prediction!

& 𝑌("#$!%&), … , 𝑌(")



• Learn from thousands of features describing the environmental characteristics
• Learn to jointly model spatiotemporal effects
• Learn from sparse and unevenly distributed observations

We build DeepLATTE (recap)
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Creating initial environmental 
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- Eliminating irrelevant features
- Compacting feature embeddings while 

capturing important feature interactions

• Feature Selection
- Adding 𝐿1 regularization   𝐿)* = ∑+∈- (#$) 𝑤

i.e., minimizing ( 𝒘𝟏 + 𝒘𝟐 + 𝒘𝟑 + … )

• Learning Feature Interactions
- Minimize Diff 𝑋)* , 6𝑋)* to ensure that the 

condensed feature embeddings effectively 
captures useful information

Feature selection and compacting
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For example,
𝑥(= Len(Primary Roads)
𝑥)= Area(Industry)
𝑥*= Temperature

If 𝒘𝟑 is small, Temperature is 
not important.

For example,

ℎ( - a combination of three 
features with some weights
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Learning Spatiotemporal Effects

• Capture spatiotemporal effects: current air quality is correlated with the 
environmental characteristics now, in the past, and from neighboring locations.

• Conv-LSTM layer (Shi et al., 2015)
- Add the convolution operation directly in the recurrent neural network

H("#$)H("#&)

𝑋("#$) 𝑋(")

H(")

𝑋("#'!($)

H("#'!($)
LSTM Cell LSTM Cell LSTM Cell

Compacted representation 
of environmental 
characteristics at each time

Hidden 
information from 
previous times

Convolution operations within 
each LSTM cell

3×3

CNN (Convolutional Neural Network) 
LSTM (Long Short Term Memory), a Recurrent Neural Network

Predictions
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where 𝑦$ is the 
observation and 9𝑦$ is 
the prediction
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• Can compact features and capture important feature interactions
• Can capture spatiotemporal effects
• But we only have sparse and unevenly distributed observations

• limited variations of environmental characteristics in the training data

Are we done yet…

Done
Done

Next



Sparse & unevenly distributed observations

• Sparse & unevenly distributed observations make the model focus on the 
labeled locations
• Learned predictions focus on a few locations can fluctuate within a small 

distance, e.g., 1,000m

P - Predictions

The model has too many 
unseen locations!



Use spatial data properties to our advantage

• Tobler's First Law of Geography: Everything is related to everything else, but 
near things are more related than distant things. 

Location A

Location B

Nearby Air quality at location A

Air quality at location B

>



• Enforcing spatially and temporally neighboring embeddings to be similar
- i.e., environmental characteristics change gradually in space and time

(𝑡 − 𝐾$) (𝑡 − 1) (𝑡)
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Use Tobler’s first law of geography

Minimizing the Euclidean distance of (𝐸5 , 𝐸:)

Same location at different times

Same time at different locations

Time

Space



• Enforcing spatially and temporally neighboring embeddings to be similar
- i.e., environmental characteristics change gradually in space and time

𝐸5
(") ≈ 𝐸5

(:)

𝐸5
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(") 𝑗 ∈ 𝒩5
& , … ,𝒩5

;#

𝑗 ∈ 𝑡 − 1, … , 𝑡 − 𝐾$

Use Tobler’s first law of geography

Minimizing the Euclidean distance of (𝐸5 , 𝐸:)

Same location at different times

Same time at different locations

BUT this only benefits dense 
and evenly distributed sensor 
networks. In practice, most 
sensors do not have nearby 
neighbors.

PurpleAir Sensors
https://www2.purpleair.com/

(50km×40km geographic area)

South Coast AQMD Monitors
https://gispub.epa.gov/airnow/

https://www2.purpleair.com/
https://gispub.epa.gov/airnow/


• Enforcing neighboring embeddings to have similar air quality
• Nearby locations have similar air quality implies locations with a similar “environment” have 

similar air quality

Extend Tobler’s first law of geography

Can we learn how to 
quantify how distance 
similarity implies
environment similarity and
then air quality similarity?

Location semantic at location A

Location semantic at location B
Embedding

Embedding

Embedding

>
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(ℎ)Embedding similarity bins (distance lag)
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Learning autocorrelation pattern in the 
embedding space
• First, quantifying the spatial autocorrelation pattern 

that nearby embeddings have a similar air quality
• Use a spatial statistical method – Kriging

𝛾 ℎ =
1

2𝑁(ℎ)
.
.

.
/0.

𝑌 𝐸. − 𝑌 𝐸/
)

- For every distance lag (bin), computing the semivariance, 𝛾 ℎ

where 𝑁(ℎ) is the number of pairs in a bin

Example Embedding Space
1
2×2 𝑌( ) − 𝑌( ) & + 𝑌( ) − 𝑌( ) &

where 𝑌 𝐸 is the air quality value (label) of embedding 𝐸

Semivariance Computation

In Kriging-like methods, we use geographic distance
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Embeddings



Learning autocorrelation pattern in the 
embedding space
• First, quantifying the spatial autocorrelation pattern 

that nearby embeddings have a similar air quality
• Use a spatial statistical method – Kriging
• Quantify the embedding autocorrelation with a kernel 

function

(ℎ)

Strong autocorrelation Little autocorrelation 

“Influence Range” kernel function
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Embedding similarity bins (distance lag)

The kernel function tells us: 1) 
within an influence range, two 
nearby embeddings would have 
similar air quality; 2) theoretically 
how embedding distance implies air 
quality similarity (the dashed blue 
line)



• Predictions should have a similar autocorrelation pattern as the observations within 
the influence range
• i.e., the purple (observation) and green (prediction) dashed lines (indicating the 

autocorrelation strength) should be similar

• Represent pairwise embedding distances in each bin as a Gaussian distribution
• Minimizing ∑#𝐷$%(𝒩(𝜇&@, 𝜎&@)||𝒩(𝜇 '&@, 𝜎'&@))

Enforcing autocorrelation to refine 
embeddings

Encourage the network to learn 
from unlabeled locations since we 
can describe each location with an 
embedding! 

Embeddings
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Embedding similarity bins (distance lag)
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Put everything together

Total Loss = Loss[Trainin Total Loss =  𝛼 × Loss[Sparse Layer] + 𝛽 × Loss[Auto-Encoder] 
+ 𝛾 × Loss[Local Autocorrelation] + 𝜂 × Loss[Global Autocorrelation]

Spatial and Temporal Space Embedding Space

Road length

Temperature

…
 …

Enforcing Local 
Embeddings to be 

Similar

Enforcing 
Autocorrelation 

Pattern

Leveraging spatial properties 
to improve embeddings

Feature 
Selection

Jointly Learning 
Spatiotemporal 

Effects

Creating initial environmental 
characteristics embeddings



Experiment settings

• Create a grid surface with cell size 500m×500m
- 50km×40km in Los Angeles

• Input Data
- Air quality data: PurpleAir

- hourly PM2.5 measurements (2018)

- Meteorological data: DarkSky
- hourly weather information, e.g., temperature, visibility, 

pressure, humidity

- Geographic data: OpenStreetMap
- 82 features, e.g., length(primary roads), area(green land), 

count(hotels)

- Other features: hour of day, day of week, day of year, 
longitude and latitude 

26

Gridded Space



Experiment settings

• Training settings
- Dividing the area into four parts, each selecting 

randomly 60% locations for training, 20% for 
validation, and 20% for testing

A B

C D

Ensure similar spatial 
distribution of the training 
data and validation data



Quantitative analysis

• Built one predictive model per month
• DeepLATTE (red line) outperformed all baseline methods in RMSE and R2

• Ablation studies
• Without the feature selection module underperforms 1.8%-5.1% in RMSE
• Without learning autocorrelation underperforms 4.1%- 8.3% in RMSE 

RM
SE

DeepLATTEOur 2017 model

But, for the locations that 
do not have a ground 
observation, how do we 
know we are correct?



Evaluating geo-features

• Evaluating the relationships between predictions and geographic features
- Showing the result in Oct. 2018, i.e., computing monthly average

Motorway 

(m) Motorway Light Rail 

0 16.9374 17.2880

Distance <= 500 16.7656 17.1838

Distance <= 1,000 16.6616 17.0828

Light Rail 

Predictions

Parks

(m) Park

0 16.4163

Distance > 500 16.6054

Distance > 1,000 17.0344

Close to parks improve air quality

Away from major transportation 
networks improve air quality



Visualizing hourly average prediction patterns

Midnight 3AM 6AM

12PM 3PM 6PM

9AM

9PM

0 5 10 15 20
8

10

12

14

16

18

20

• For each grid, computing the hourly 
average over a year 

Same-scale legend

Large temperature differences in a 
day create a thick layer in the air 
preventing PM2.5 to escape



Spatial Visualizations
Monthly Average Predictions

Feb. 2019, Our Model Feb. 2019, Ordinary Kriging Oct. 2019, Our Model Oct. 2019, Ordinary Kriging 

EXPERIMENT  |  31
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Spatial Visualizations
Monthly Average Predictions

Feb. 2019, Our Model Feb. 2019, Universal Kriging Oct. 2019, Our Model Oct. 2019, Universal Kriging 

EXPERIMENT  |  32
* Universal Kriging can leverage covariates (e.g., temperature) to estimate a trend in the 
spatial process

Golf Course

105

710

Intersection of 
110 and 10

110

Griffith Park Griffith Park



• Selected dynamic features (10 out of 14), Oct. 2018 monthly average

- Visibility
- Day of week
- Dew point
- Day of year
- Temperature
- Wind speed
- Wind direction
- Cloud cover
- Pressure
- Hour of day

33

Evaluating selected dynamic features

“Atmospheric visibility has been found to correlate well with 
PM2.5 concentrations” [Zhang et al. (2006)]

Dynamic Features Pearson Correlation with 
Predictions

Visibility -0.7395

Dew point 0.3070

Temperature -0.2417

Wind speed -0.2608

Wind direction 0.1794

Cloud cover 0.25413

Pressure -0.0613



• Selected static features (21 out of 84, showing top 12)

- Latitude
- Longitude
- Land use: commercial
- Roads: motorway 
- Traffic: stops
- Land use: residential
- Traffic: fuel
- Roads: secondary
- Roads: service
- Waterways: river
- Railways: light rail
- Railways: rail

34

Evaluating selected static features

Moore et al. show that industrial areas, arterial roads, open areas 
are statistically significantly associated with PM2.5 in Los Angeles (R-
value is approximately 0.4 to 0.6 respectively) using LUR approach. 

Kam et al. demonstrated that the light-rail lines and subways are 
strongly associated with ambient PM levels in Los Angeles 
(R2=0.61) by personally monitoring the air quality at the stations. 



Summary

• Presented a novel spatial-enabled machine learning approach that predicts fine-
scale air quality, support interpretable results 

• Future Work
- Apply our model to other location-dependent time-series data, e.g., remotely sensed thermal 

imagery over time

- Improve the interpretability (the selected features)

- Model the uncertainty in the contextual data

- Improve handling the spatial non-stationarity problem

35



Generating Linked Historical Maps

Li et al. KDD (2020)



Why historical maps?

• Existing data sources typically contain only contemporary 
datasets, e.g., present place names

• Thousands of historical maps contain detailed geographic 
information at various times in the past

• Most of the historical maps are usually just scanned 
images with limited metadata

How can we find relevant 
maps and make them 
useful if manual metadata 
curation is not possible?



Text on maps are useful but complex

OCR (optical character recognition) tools, such 
as Google Vision API, would only generate 
“Fall” and “River” but not “Fall River”



Generating linked historical maps

Map Image

Location 
Phrase 

Generation

Mindego Creek
La Honda
Skyline Ridge

…

Black Mountain

Map Geo
localization

Entity 
Matching

Linked Historical Maps

External KBs: 
LinkedGeoData

Linked

A fully automatic pipeline!



Generating location phrases
Textual Model: Labels in the same 
phrase should share similar textual 
features

High Recall/Low Precision
Help to determine a search 
neighborhood

Visual Model: Labels in the same phrase 
could have similar nearby geographic 
features

Low Recall/High Precision
Help to refine the results

U-Net semantic segmentation

…



Geolocalization using location phrases
We use Google Geocoding API as the geo-coder: text to lat/long

Location 
Phrases

Geo-coder

List of 
Candidate 

Coordinates

The cluster center of the largest 
component is the map 
geolocalization result.

(34.25, -116.18)

Clustering

Mindego Creek
Providence Mountains
Cooks Wall
Clipper Mountain
…
…
Banana Spring

Mindego Creek
(36.77, -119.48)
(36.54, -119.72)
…

Providence Moutains
(38.72, -120.53)
(36.74, -119.42)
…

DBScan



Entity linking using map geolocation

(34.25, -116.18)

Entity 
Matching

Georeferenced 
Location Phrases

Mindego Creek
Providence Mountains
Cooks Wall
Clipper Mountain
…
…
Banana Spring

“Black Mountain” on this map is 
now linked to an OSM node 
with all kinds of extra metadata!

Match name and location



Experimental setting and metrics

• Datasets
• United States Geological Survey maps (USGS)

• 15 maps with 4,375 text regions and locations
• Ordnance Survey maps (OD)

• 10 maps with 2,197 text regions 
• New York Public Library maps (NYPL)

• 500 maps without annotated text regions but with locations

Crowdsourced by NYPL



Geolocalization results for small dataset

USGS dataset contains 15 images, we used 12 for training and 3 for testing.

If smaller than 1, the map image 
covers the predicted geocoordinates

Geocoding using all text as a 
paragraph

Geocoding using individual words and 
then spatial clustering Geocoding using individual phrases 

and then spatial clustering



Geolocalization results for large dataset
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NYPL dataset contains 500 images. 



Summary with a query sample

Sample query: search for historical maps that 
contain mountains higher than 1,000 meters

More than just keyword search!



Ongoing: Object detection with weak annotation

• Object detection with limited training data

Blue area –
wetland 
boundaries from 
the United States 
Geological Survey

Identified locations of wetland symbols
Green: true positives
Red: false Positives

Scanned historical map



Results visualizations (cars)

• We know there are many target objects 
within the boundary

• Spatial auto-correlation
• Spatial co-occurrence of cars and parking lots

• But we only have one sample…
• Build a generative model to learn a more 

“relaxed” representation (a distribution) 
than descriptive models

• So that we can iteratively improve the 
representation when we find more 
objects like the target sample



Ongoing: Detecting Trajectory Moving Behaviors Limited 
and Uncertain Contextual Data

• Manual labeling is expensive

• Various spatial & temporal scales in the trajectories

• Geographical context can be incomplete



Ongoing: Encoding the World’s Geospatial Data



Overall summary

• We can exploit spatial and temporal 
relationships across data to create large 
amounts of information-rich contextual 
data
• We can use the contextual data to enable 

many types of analytics about spatial 
things, e.g.,
• Predicting fine-scale air quality 
• Detecting objects from geo-Images using 

weakly annotated data
• Geolocating and linking scanned map images 

with external knowledge bases

And many, many other real-world 
applications that need the investigation 
of fundamental computer & spatial 
science research to solve!
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