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What are spatial Al methods?

* Machine learning & data mining
methods generally assume
independent and identically

distributed random variables —i.i.d.

e But spatial data are not i.i.d.

 Auto-correlation
* Nearby things are similar

» Spatial non-stationarity
* Models are difficult to generalize

 And more...

machine learning models?

T

How do we use these unique
spatial data properties to improve
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Why do we care?

* Location is the key to link various types

of data

* e.g. can provide context-rich annotated
(training) data (if we do it correctly)

“By using the data in OSM, we were able to
n collect more than 100 million labeled

examples to add to our training data set.”

“However, using OSM data for labels

presented several challenges that required
novel approaches to overcome.”

Al Data sca
OQMeto Faeeboeek Map with Al

https://ai.facebook.com/blog/mapping-the-world-to- :
help-aid-workers-with-weakly-semi-supervised-learning/ Label road locations on imag
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What are we building?

e Health Impact: Tech. Transfer &

Real-World Problems & Data |+ Transportation ‘ Open Source Tools In-Use

@ * Social Sciences
@ Metro
Gec?
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End-to-End Data Analytics Systems
* DeeplLATTE: Air Quality Prediction & Forecasting Framework Crosstown

* Strabo & mapKurator: Map Processing Platform @ .2e%
132 Google Al
* ADMS: Transportation Data Analytics Platform (joint work

with USC IMSC) ' n ThAeI -
. lan Turing
Institute
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Fundamental Research

Risk Solutions

ACM SIGSPATIAL, ACM KDD, IEEE International Conference on Data Mining, IEEE BigData, IEEE Mobile
Data Management, Extended Semantic Web Conference, International Journal of Geographical
Information Science, Knowledge-Based Systems



Building Autocorrelation-Aware Representations
for Fine-Scale Air Quality Prediction

Lin et al., 2020 (IEEE International Conference on Data Mining)
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Motivation

4] !
Air quality monitoring Y
locations are limited and S
unevenly distributed.
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The air quality in the entire city
of Los Angeles is the same
everywhere?! That can’t be right.
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Traditional spatial interpolation methods (e.g., IDW —
inverse distance weighting, Kriging) produce smooth
results over the space.

https://airnow.gov/



https://airnow.gov/

50km

Not suitable for exposure tracking
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Spatial interpolation methods do not
reflect local PM2.5 spatial variations!
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What we need:

Air quality prediction that
reflect the environment impact
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Hypothesis

* Environmental characteristics significantly impact air quality (e.g., PM2.5)

Authors Study area Monitor Dependent Independent variables Buffer size (Adjusted) R?
counts variables
Briggs et al. Huddersfield (UK) 20,28 and NO, Road traffic, urban land, and 300 m 0.58 to 0.76
(2000) Sheffield (UK) 35 topography (altitudes)
Northampton (UK)
Ross et al. New York City (US) 28-49 PM, 5 Traffic, land use, census 50, 100, 300, 500 0.607 to
(2007) and 1000 m 0.642
Suet al. Greater Vancouver 116 NO/NO, Road, traffic, meteorology (wind 3000 m 0.53 to 0.60
(2008) Regional District, speed, wind direction and cloud
(Canada) cover/insolation)
Mavko et al.  Portland, (US) 77 NO, Traffic-related; Land use-related; 50, 100, 250, 0.66 to 0.81
(2008) Elevation; height from MSL; 300, 350, 400,

distance to a river; wind; direction 500, 750 m.

Source: [Liu et al., 2016]



Challenges

e How to learn from thousands of feat

characteristics with only sparse ap Existing approaches either require expert
knowledge or does not deal with space and

time together and cannot handle sparse and
unevenly distributed observations

* How to jointly model spatiotery

Wind blowing towards North East (e.g., [Briggs et al. 1997; Zheng et al. 2013; Liu
et al., 2016; Lin et al. 2017])
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We build DeepLATTE

* Learn from thousands of features describing the environmental characteristics
* Learn to jointly model spatiotemporal effects

* Learn from sparse and unevenly distributed observations

| il Jointly Learning Enforcing Local Enforcing
| Feature r ) Embeddi b lati
! i Spatiotemporal mbeddings to be Autocorrelation

Selection r e Similar Pattern

=4 Road length =
: |:> Creating initial environmental Leveraging spatial properties

characteristics embeddings to improve embeddings

Temperature I:>




A Area(Industry)
Len(Primary Roads)

ST "'"ff"" Humidity
T Temperature

Formally

Primary road«

e
Green land

* Input: multi-dimension matrix
X=(F,HW)

- Each cell in X contains F = [F;, F,], describing the
environment
- F;is dynamic (e.g., weather) and E; is static (e.g., roads) L wu
V'=(0HW) [XC17+D | x©] g[y 14D yO]
- Each cell in Y contains O, the air quality observation, X h Z
. . 15,000m? 5 =
dimension=1 - e
. . N g = & ibing
- Many empty cells (limited observations) &
T /
- 3 3 \

i G 510m

Y(t) T ! = . ,?/,\
L R N , 250m Pedestrian
: ! 10,000m? 200m == Motorway
i , Green land

a Industrial area| ©




We build DeepLATTE (recap)

* Learn from thousands of features describing the environmental characteristics
* Learn to jointly model spatiotemporal effects

* Learn from sparse and unevenly distributed observations

| il Jointly Learning Enforcing Local Enforcing
| Feature r ) Embeddi b lati
! i Spatiotemporal mbeddings to be Autocorrelation

Selection r e Similar Pattern

=4 Road length =
: |:> Creating initial environmental Leveraging spatial properties

characteristics embeddings to improve embeddings

Temperature I:>




Feature selection and compacting

Eliminating irrelevant features

Compacting feature embeddings while
capturing important feature interactions

Feature Selection
- Adding L1 regularization Lg, =Y ., e»llwll

i.e., minimizing (lwq| + |wy| + [ws| + ...)

Learning Feature Interactions

- Minimize Diff(X;,, X;, ) to ensure that the
condensed feature embeddings effectively
captures useful information

Monday Sunday

" For example,

x1= Len(Primary Roads)
X,= Area(Industry)
x3= Temperature

If w3 is small, Temperature is

~ not important.

" For example,

Len(Primary Roads) O Wy

Area(Industry) OWZ@

Day of Week O W3

h; - a combination of three

. features with some weights |

Static
Features

Encoder
Japodag

Features




Learning Spatiotemporal Effects

» Capture spatiotemporal effects: current air quality is correlated with the
environmental characteristics now, in the past, and from neighboring locations.

e Conv-LSTM layer (Shi et al., 2015)

- Add the convolution operation directly in the recurrent neural network

where y; is the
observation and J; is
the prediction

CNN (Convolutional Neural Network)

Compacted representation m
LSTM (Long Short Term Memory), a Recurrent Neural Network L _ L(v: ¥
pred — (yu YL)
i=1

of environmental
characteristics at each time |~ Y (E-T'+1) x(t-1) x®

l l l .DE'O ,J,%.,_. I
__________ rpmmme e OE-T 4 (=2 pannn oo (61 proon oo S
| |1 LSTM Cell oo 1 ISTMCell 4 LSTMCell | 2
: w T, e w22 I T ____________ ! E
1 : , ? L i oo
3X3 Convolution operations within Hidden Predictions
each LSTM cell information from

previous times




Are we done vet...

Can compact features and capture important feature interactions

Can capture spatiotemporal effects

* But we only have sparse and unevenly distributed observations
* limited variations of environmental characteristics in the training data

Jointly Learning Enforcing Local Enforcing
Spatiotemporal Embeddings to be Autocorrelation
Effects Similar Pattern

Feature
Selection

d Road length |:>

|:> Creating initial environmental Leveraging spatial properties
characteristics embeddings to improve embeddings

Temperature I:>




Sparse & unevenly distributed observations

* Sparse & unevenly distributed observations make the model focus on the
labeled locations

* Learned predictions focus on a few locations can fluctuate within a small
distance, e.g., 1,000m

The model has too many
unseen locations!

P - Predictions




Use spatial data properties to our advantage

* Tobler's First Law of Geography: Everything is related to everything else, but
near things are more related than distant things.

Location B Air quality at location B

distance(xi,xjg‘< o= similarity(y,-,y;)‘ > €
\ N \

Location A Nearby Air quality at location A




Use Tobler’s first law of geography

* Enforcing spatially and temporally neighboring embeddings to be similar

- i.e., environmental characteristics change gradually in space and time

ooooocy Time
L = = Same location at different times
T A A
! S ‘l + ; e o0 3 : + R - " ‘.( & (t) ~ (]) ’ — _
Loc i . v |:> E;W ~E, jef{t—1,..,t—Kr}
(t — Kn) (t—1) (t) Minimizing the Euclidean distance of (Ej, E;)
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Use Tobler’s first law of geography

* Enforcing spatially and temporally neighboring embeddings to be similar

- i.e., environmental characteristics change gradually in space and time

. . n i
BUT this only benefits dense ,
and evenly distributed sensor e
networks. In practice, most ; : 1
‘Sallta,c_l_arlta- \ h (
sensors do not have nearby - O )
neigh bors- Sllealley’ w‘ &l ‘:;v 2 “:. : Folty
: Qlousand 0dks “®. b : : B £
@ K ) HWesL@ 4 :
gl
¢ cathjgantannals £ N
South Coast AQMD Monitors PurpleAir Sensors
https://gispub.epa.gov/airnow/ https://www?2.purpleair.com/

(50km=40km geographic area)


https://www2.purpleair.com/
https://gispub.epa.gov/airnow/

Extend Tobler’s first law of geography

* Enforcing neighboring embeddings to have similar air quality
nvironm t” have

* Nearby locations have similar air quality implies locations with a similar “e
similar air quality

Can we learn how to
guantify how distance
similarity implies
environment similarity and
then air quality similarity?

Embey,y:
Locatid \beddlng at location B

distance(xj, xj) < 6 = similarity(z,-,zj(; €1

Embap, -
Locatio edd’”g at location A

similarity(zi, zj) > €1 = similarity(yi, y;j) > €




Learning autocorrelation pattern in the
embedding space

 First, quantifying the spatial autocorrelation pattern similarity(zi,zj) > €1 = similarity(yi, yj) > €
that nearby embeddings have a similar air quality

* Use a spatial statistical method — Kriging

In Kriging-like methods, we use geographic distance

||El- —E; ||2 € [0.1,0.2) (embedding distance)
/ Example Em(lgedding Space Semivariance Computation
1

()

(@]

% 7

g ° 25| 535 ((V(®) = Y())? + (¥(®) = Y(©))?)
g el ) o .

0 . N - ® where Y(E) is the air quality value (label) of embedding E
>

T, o« o - For every distance lag (bin), computing the semivariance, y(h)
>

O ° _ 1 _ 2

'<:E e - . V(h) - ZN(h)Z; (Y(Ei) Y(Ej))

Embedding similarity bins (distance lag) where N(h) is the number of pairs in a bin



Learning autocorrelation pattern in the
embedding space

* First, quantifying the spatial autocorrelation pattern
that nearby embeddings have a similar air quality

The kernel function tells us: 1)
within an influence range, two
nearby embeddings would have
similar air quality; 2) theoretically
how embedding distance implies air

* Use a spatial statistical method — Kriging

* Quantify the embedding autocorrelation with a kerng

function

Strong autocorrelation Little autocorrelation
/\ 1 /\

1) . .. .
S 1 ~ P quality similarity (the dashed blue
© : .

T w . line)

g sodeced i PRanee | S

£ o

S “Influence Range”

v | kernel function nriuence Range °

.é. 30 !

E 20 e hd

S

S- 10 ° : Estimated

-<—E o © Observed

Embedding similarity bins (distance lag)



Air quality semivariance
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Enforcing autocorrelation to refine
embeddings

similarity(zi, zj) < €1 = similarity(yi, y;) > €
Predictions should have a similar autocorrelation pattern as the observations within
the influence range

* i.e., the purple (observation) and green (prediction) dashed lines (indicati
autocorrelation strength) should be similar

Represent pairwise embedding distances in each bin as

* Mlnllelng ZhDKL(N(auyh; O'yh)”N(Mj}h, O-j\lh))

Encourage the network to learn
from unlabeled locations since we

can describe each location with an

S : >
N 0.1 0.2 03 n.4 0.5 0.6 0.7 0.8 0.8 0

Embedding similarity bins (distance lag)



Put everything together

! Effects Similar Pattern

] Road length |:>

|:> Creating initial environmental Leveraging spatial properties

Spatial and Temporal Space Embedding Space
| :: Jointly Learning Enforcing Local Enforcing
: AEEIIE ! Spatiotemporal Embeddings to be Autocorrelation
: Selection '

characteristics embeddings to improve embeddings

emperature I:>




Experiment settings

* Create a grid surface with cell size 500mx500m
- 50kmx40km in Los Angeles

* |Input Data

Air quality data: PurpleAir

- hourly PM, s measurements (2018)
- Meteorological data: DarkSky
- hourly weather information, e.g., temperature, visibility,
pressure, humidity

Geographic data: OpenStreetMap

- 82 features, e.g., length(primary roads), area(green land),
count(hotels)
- Other features: hour of day, day of week, day of year,
longitude and latitude
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Location Distribution in 12

Experiment settings .
34.10 A & = 2 .' :‘: e
* Training settings : SRR
- Dividing the area into four parts, each selecting ] & W . . i
randomly 60% locations for training, 20% for o e :
34.00 e o o
validation. and 20% for testing . . .
. . - - L J ..&.. L ]
O 33.95 o0
Ensure similar spatial -
A_ | distribution of the training 3901 " "
25 data and validation data Pl 5
3385 | o o
JE< ---------------------------------------------- o o °
2 o e train e
ok 33.80 - °
e val .o .
o test o o*
C 33.75 1 z : 3 : .
® -1185 -1184 -1183 -118.2 -118.1
lat

40km




Quantitative analysis

* Built one predictive model per month
* DeeplLATTE (red line) outperformed all baseline methods in RMSE and R2

n— — —
RF OK - DAL
IDW = Our 2017 model—— DeeplLATTE

101

But, for the locations that
do not have a ground
observation, how do we
know we are correct?

RMSE

* Ablation studies
* Without the feature selection module underperforms 1.8%-5.1% in RMSE

* Without learning autocorrelation underperforms 4.1%- 8.3% in RMSE



Evaluating geo-features

* Evaluating the relationships between predictions and geographic features

- Showing the result in Oct. 2018, i.e., computing monthly average

Away from major transportation
networks improve air quality

Close to parks improve air quality

(m) Motorway Light Rail
0 16.9374 17.2880
Distance <= 500
Distance <= 1,000 16.6616 17.0828
(m) Park
0 16.4163
Distance > 500
Distance > 1,000 17.0344

. _H

.l

Light Rail




Visualizing hourly average prediction patterns

Same-scale legend

* For each grid, computing the hourly
average over a year

20

18

16

14

12

10

Large temperature differences in a
day create a thick layer in the air

preventing PM2.5 to escape T Cogst
AQMD




Spatial Visualizations
Monthly Average Predictions

Griffith Park

H

Feb. 2019, Our Model Feb. 2019, Ordinary Kriging Oct. 2019, Our Modéel Oct. 2019, Ordinary Kriging

EXPERIMENT | 31



Spatial Visualizations
Monthly Average Predictions

Griffith Park Griffith Park

Feb. 2019, Our Model Feb. 2019, Universal Kriging Oct. 2019, Our Modéel Oct. 2019, Universal Kriging

* Universal Kriging can leverage covariates (e.g., temperature) to estimate a trend in the

. EXPERIMENT | 32
spatial process



Evaluating selected dynamic features

» Selected dynamic features (10 out of 14), Oct. 2018 monthly average

“Atmospheric visibility has been found to correlate well with

- Visibility )
D ‘ K PM2.5 concentrations” [Zhang et al. (2006)]

- ay Oor wee

- Dew point . Pearson Correlation with
D f ear Dynamic Features Predictions

- bayory

_ Temperature Visibility -0.7395

- Wind Speed Dew point 0.3070

- Wind direction Temperature -0.2417

- Cloud cover Wind speed -0.2608

- Pressure Wind direction 0.1794

- Hour of day Cloud cover 0.25413

Pressure -0.0613




Evaluating selected static features

 Selected static features (21 out of 84, showing top 12)

- Latitude

- Longitude

- Land use: commercial
- Roads: motorway

- Traffic: stops

- Land use: residential
- Traffic: fuel

- Roads: secondary

- Roads: service

- Waterways: river

- Railways: light rail

- Railways: rail

Moore et al. show that industrial areas, arterial roads, open areas
are statistically significantly associated with PM2.5 in Los Angeles (R-
value is approximately 0.4 to 0.6 respectively) using LUR approach.

Kam et al. demonstrated that the light-rail lines and subways are
strongly associated with ambient PM levels in Los Angeles
(R2=0.61) by personally monitoring the air quality at the stations.

34



summary

* Presented a novel spatial-enabled machine learning approach that predicts fine-
scale air quality, support interpretable results

e Future Work

Apply our model to other location-dependent time-series data, e.g., remotely sensed thermal
imagery over time

Improve the interpretability (the selected features)

Model the uncertainty in the contextual data

Improve handling the spatial non-stationarity problem



Generating Linked Historical Maps

Li et al. KDD (2020)
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Why historical maps?

How can we find relevant

« Existing data sources typically contain only conte maps and make them
datasets, e.g., present place names useful if manual metadata

. o
* Thousands of historical maps contain detailed geograp curation is not possible:

information at various times in the past

* Most of the historical maps are usually just scanned
images with limited metadata




Text on maps are useful but complex

oo

OCR (optical character recognition) tools, such
as Google Vision API, would only generate
“Fall” and “River” but not “Fall River”




Generating linked historical maps

Map Image >
' Mindego Creek 7
La Honda //
Location Skyline Ridge SR
Map Geo
— Phrase — oealra
Generation ocalization

A fully automatic pipeline!
Entity
4—
Matching

Linked Historical Maps

Lmked@
External KBs:
LinkedGeoData




Generating location phrases

')eGoogle Cloud

Vision API

Textual Model: Labels in the same
phrase should share similar textual
features

High Recall/Low Precision
Help to determine a search
neighborhood

Visual Model: Labels in the same phrase
could have similar nearby geographic

features |Mindeggj|ﬁill|

Low Recall/High Precision
Help to refine the results

Multi-modality
embedding

| Classification :

-------------- O — Classifier [l L _ Loss

Multi-modality embedding

Word I
Embeddin |

-1

N -
o

Capitalization Jumd I

= 1 I Tripletloss
I

| I | ﬁ |:> crop & concat

1 max-pool 2x2
:: {
H up-conv 2x2
J H - concat & input
ﬂ 6 ﬂ - output

U-Net semantic segmentation



Geolocalization using location phrases

4 We use Google Geocoding API as the geo-coder: text to lat/long

Geo-coder

Location

v

Phrases

Mindego Creek
Providence Mountains
Cooks Wall

Clipper Mountain

Banana Spring

Clustering

—

List of
Candidate DBScan
Coordinates

Mindego Creek
(36.77,-119.48)
(36.54, -119.72)

Providence Moutains
(38.72,-120.53)
(36.74,-119.42)

>

'8

(34.25,-116438)

‘5

The cluster center of the largest
component is the map
geolocalization result.




Entity linking using map geolocation

Node 358816160
Entity
. Node 358795039
Matching O S e . Tags @
Tags 7
' ' 1————7  ele=2183
ex:gs:/l.../lUSGS-15-CA-pal gnis:county_id=071
oalto-e1899-s1895-rp1911 jpg gnis:created=06/01/1995
gnis:feature_id=1667059
gnis:state id=0N&
}|-116.18)
rdfs:type geo:sfOverlaps  geoname:nearby
v “Black Mountain” on this map is
with all kinds of extra metadata!
rdfs:label geo:asWKT rdfs:seeAlso ele=1550
'/ / \\ gnis:county_id=071
. S 2 gnis:created=01/19/1981
["Black Mountaln"J Emp.//lmkedgeodata.org/trlpllfy/node35876207% gnis:feature_id=1660436
geo:wktLiteral gnis:state_id=06
name=Carbonate Peak
natural=peak




Experimental setting and metrics

* Datasets

e United States Geological Survey maps (USGS)
e 15 maps with 4,375 text regions and locations

* Ordnance Survey maps (OD)
* 10 maps with 2,197 text regions

* New York Public Library maps (NYPL)
* 500 maps without annotated text regions but with locations

Crowdsourced by NYPL



Geolocalization results for small dataset

Geocoding using individual words and _ o
then spatial clustering Geocoding using individual phrases

Geocoding using all text as a and then spatial clustering
paragraph \

Wrd2Paragraph WrdByWrd(Ours) PhrasByPhras(Ours) Ground Truth
Map Name
Lat. Lng. ‘ Lat. Lng. ‘ Lat. Lng. ] Lat. Lng.
Pred 60-CA-amboy-e1942 36.78 -119.42 | 33.94 -116.83 34.25 -116.24 34.50 -115.50
©) " | 60-CA-amboy-e1943-rv1943 | 36.75  -121.77 | 33.97 -116.78 34.24 -116.18 3450 -115.50
60-CA-modoclavabed-e1886 | 41.37  -121.02 | 37.99 -121.80 41.16 -121.54 41.50 -121.50
’ | km scale km scale km scale ’ km scale
60-CA-amboy-e1942 435.55 3.02 137.23 0.95 73.38 0.51 N/A N/A
Error | 60-CA-amboy-e1943-rv1943 | 619.31 4.30 131.60 0.91 68.78 0.48 N/A N/A
60-CA-modoclavabed-e1886 | 42.55 0.31 391.14 2.82 37.95 0.27 N/A N/A

USGS dataset contains 15 images, we used 12 for training and 3 for testing.

If smaller than 1, the map image
covers the predicted geocoordinates



Geolocalization results for large dataset

Error Distribution on NYPL Dataset

B word2Paragraph [ word-by-word [ phrase-by-phrase

200
150
100
50
0 - [
<1km 1-5km 5-15km 15-25km 25-50km 50-100 100-500 500+km No result
km km

NYPL dataset contains 500 images.



Summary with a query sample

ex:gs://.../IlUSGS-15-CA-pal
oalto-e1899-s1895-rp1911.jpg

rdfs:type geo:sfOverlaps  geoname:nearby
genwidLtersl
rdfs:label geo:asWKT rdfs:seeAlso

"Black Mountain*

E\ttp://Iinkedgeodata.org/triplifylnode358762079J

geo:wktLiteral

More than just keyword search!

Sample query: search for historical maps that
contain mountains higher than 1,000 meters

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX rdfs: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#>
PREFIX geoname: <http://linkedgeodata.org/ontology/>

SELECT ?map
WHERE {
?map geo:sfOverlaps
[ rdfs:seeAlso ?lgd_uri ] .
SERVICE <http://linkedgeodata.org/sparql> {
?1lgd_uri geoname:elevation ?h .
¥

FILTER (?h > 1000)

}
GROUP BY ?map




Ongoing: Object detection with weak annotation

* Object detection with limited training data

dm=====naus

Blue area —
wetland
boundaries from
the United States
Geological Survey

)
{

o Identified locations of wetland symbols
Scanned historical map Green: true positives
Red: false Positives



Results visualizations (cars)

We know there are many target objects
within the boundary

* Spatial auto-correlation

* Spatial co-occurrence of cars and parking lots

But we only have one sample...

Build a generative model to learn a more
“relaxed” representation (a distribution)
than descriptive models

So that we can iteratively improve the
representation when we find more
objects like the target sample




Ongoing: Detecting Trajectory Moving Behaviors Limited

and Uncertain Contextual Data

pe WA\ —
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Trajectories Mobility Behavior

® Manual labeling is expensive
® Various spatial & temporal scales in the trajectories

® Geographical context can be incomplete
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Ongoing: Encoding the World’s Geospatial Data
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Overall summary

* We can exploit spatial and ter
relationships across data And many, many other real-world

amounts of information- applications that need the investigation
data of fundamental computer & spatial

science research to solve!
* We can use the contextual da

many types of analytics about spatra
things, e.g.,
* Predicting fine-scale air quality
* Detecting objects from geo-Images using
weakly annotated data

* Geolocating and linking scanned map images
with external knowledge bases
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