Spatial Data Management using Spatial Databases

Yao-Yi Chiang

Computer Science and Engineering

University of Minnesota

yaoyi@umn.edu

What is Data Management?

Q

How do you manage your photos?

- Most cellphones take nice photos
 - Taking 3 photos a day will give you ~1,000 photos a year
 - Taking a 5-day vacation would give you 200 photos
- Ways to managing photos
 - Leave them on the phone?
 - Organize them into folders?
 - Upload them to some cloud services?
- Which method is the best?

This is the first Flicker that I've seen this year. I had hoped to see more but no luck so

Flickerista in azione al un sorriso per tutti, Louvre, con il solito vincitori e vinti

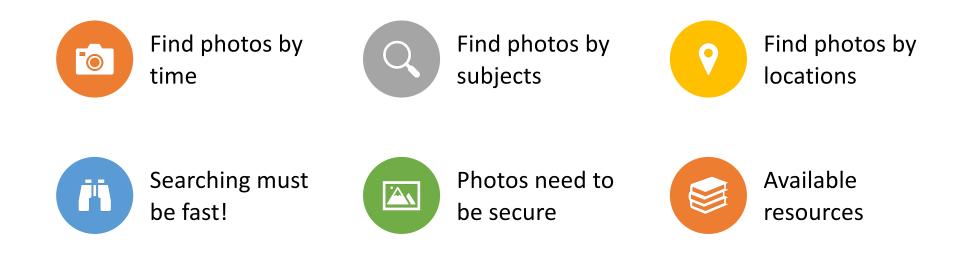
Vamos a ubicarnos

ard...htm

This one was playing peek-a-boo around the tree the feeders are in.

for my dear flickers Maka and Richard:)

As you can se even in birds.

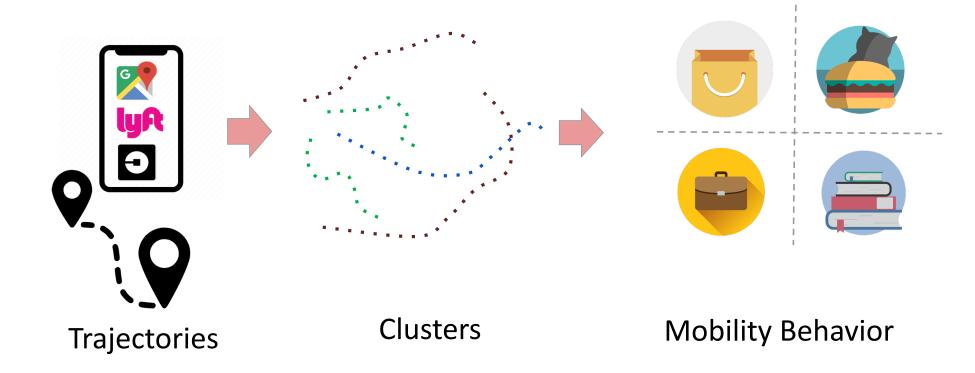


Desenvolvido no 5º período do curso de Desig (LIEMG) para a dis

er is a ground foraging

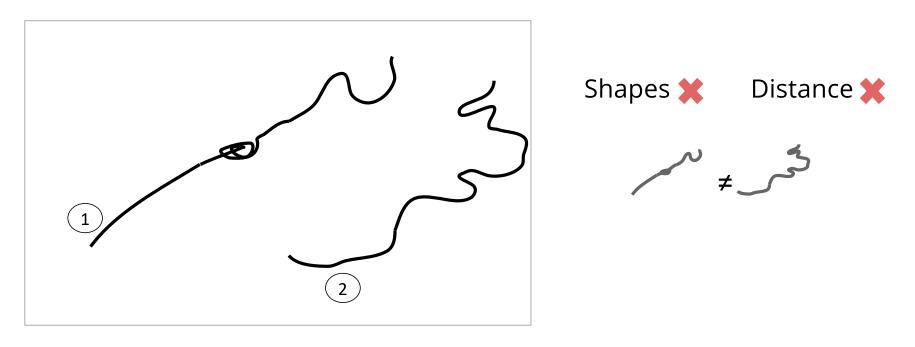
The Gilded Flicker (Colaptes

Considerations for Managing Photos

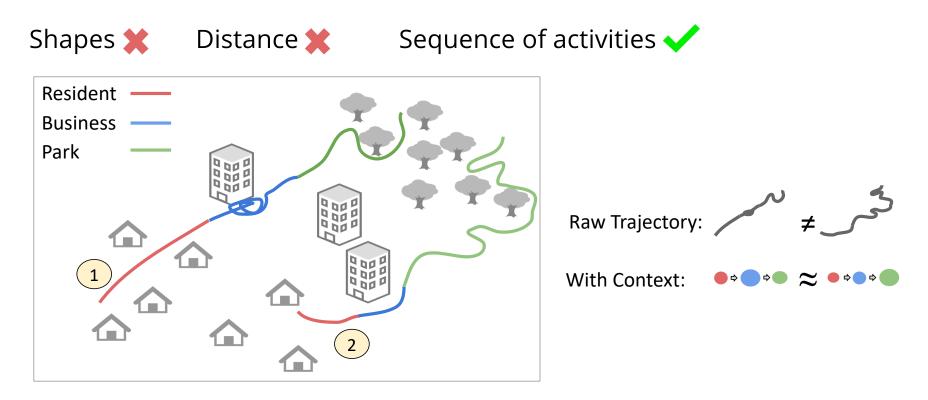


Data Management (Oracle)

- Data management is the practice of collecting, keeping, and using data securely, efficiently, and cost-effectively.
- help people, organizations, and connected things
 - optimize the use of data within the bounds of policy and regulation
 - (use data to) make decisions and take actions that maximize the benefit to the organization


What are Some Data Use Cases for Spatial AI?

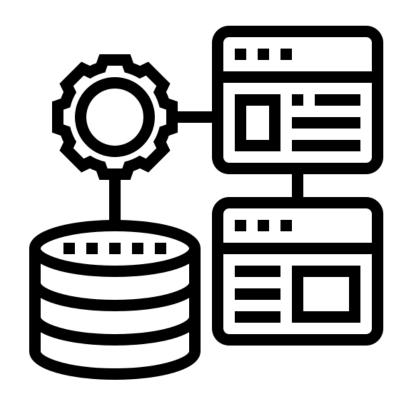
Trajectory Mining



Yue, M., Li, Y., Yang, H., Ahuja, R., **Chiang, Y.-Y.**, and Shahabi, C. (December 2019). DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis. In *Proceedings of the 2019 IEEE International Conference on Big Data (Big Data)*, pp. 988–997, Los Angeles, CA, USA

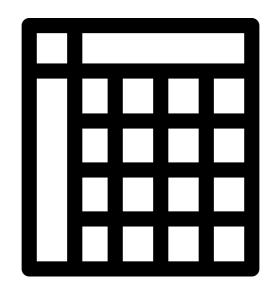
Do these two trajectories have the same moving behavior?

With Geographical Context

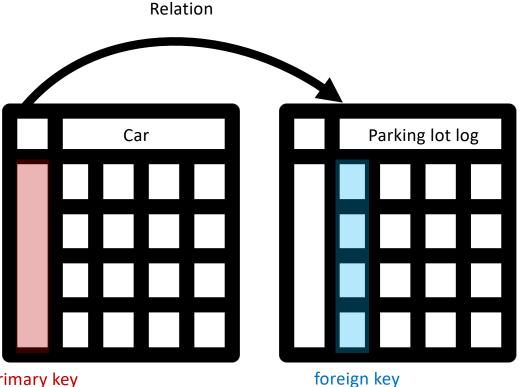

Generate Geographic Context

Find nearby geographic features at each important location of a trajectory
Distance query

Database Management System


Database Management System (DBMS)

- Persistence across failures
 - maintain a consistent system after failures – software, hardware, network failures, etc.
- Concurrent access to data
- Scalability to search on very large datasets (which do not fit inside main memories of computers)
- Efficiency

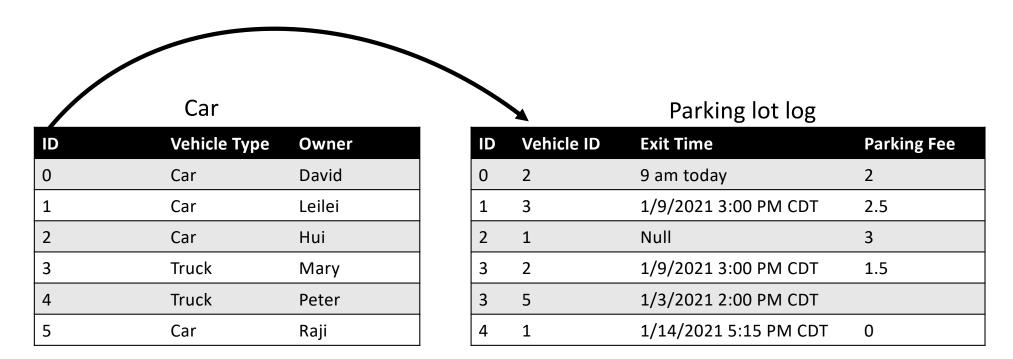

Tables in Relational DBMS

- A table describes the abstraction of a collection of things
 - e.g., cars, parking lot logs
- A table can contain many columns and many rows
- The table schema describes the metadata (columns) of these things (rows)
 - e.g., exist time
- Values in one column share the same abstract data types
 - e.g., integer, floating points

IDs and Relations

- Typically, one column, the primary key, contains the unique ID (identifier) of the described things
 - e.g., student IDs, social security numbers
- This primary key column can exist in other tables to establish a relation
 - the foreign key

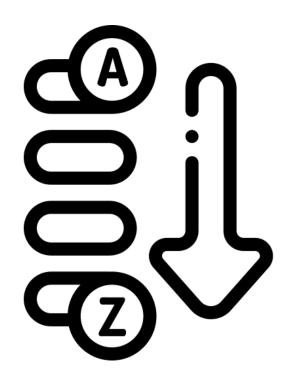
primary key

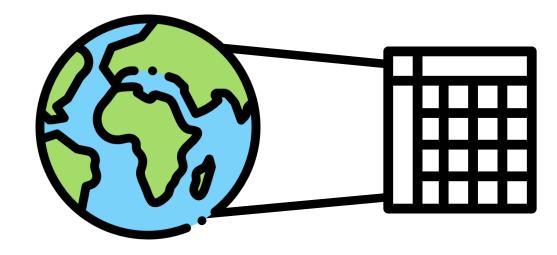

Common Abstract Data Types (ABT)

- Integers
 - 1, 5, -2, 9,...
- Floating points
 - 0.12, -1.33, 2.459,...
- Datetime
 - 11/27/1988 1:11 PM PDT
- String/Multi-characters
 - "Spatial AI is fun!"
- Customized Domains
 - "Vehicle", "Car", "Truck"

Parking lot log

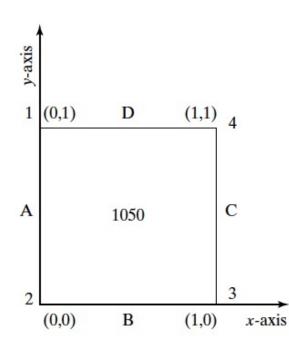
ID	Vehicle Type	Exit Time	Parking Fee
0	Car	9 am today	2
1	Truck	1/9/2021 3:00 PM CDT	2.5
2	Minivan	Null	3
3	Wagon	1/9/2021 3:00 PM CDT	1.5
3	Car	1/3/2021 2:00 PM CDT	
4	Small car	1/14/2021 5:15 PM CDT	Did not pay


Maintain Data Integrity


Also, take a look at database normalization on Wikipedia: https://en.wikipedia.org/wiki/Database_normalization

Index

- Take (machine) time to build
- Once built, help speed up data retrieval
- Example:
 - Say you have collected paper questionnaires from 100 randomly selected students
 - Now you need to find information for a specific student using their student ID
 - How do you speed up the process?



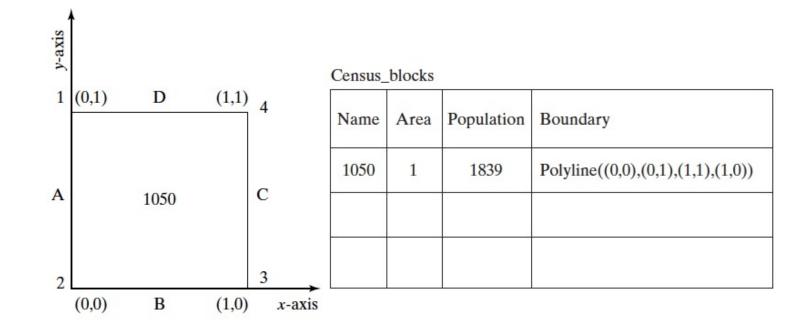
Spatial Data Management System

Model Spatial Data in Traditional DBMS

Use common ADTs, e.g., integer, string, floating points

Census_bl	locks			Polygon	
Name	Area	Population	boundary-ID	boundary-ID	edge-name
340	1	1839	1050	1050	А
				1050	В
				1050	С
				1050	D

y-coor


x-coor

Edge

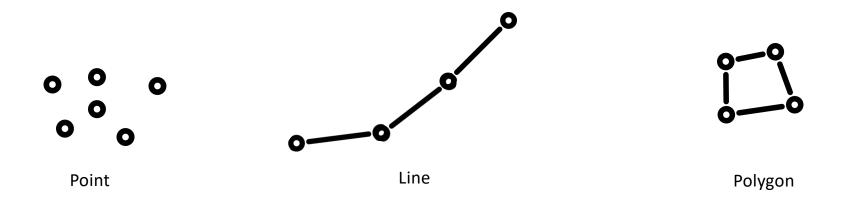
edge-name	endpoint	
Α	1	Point
Α	2	endpoint
В	2	1
В	3	2
С	3	3
С	4	4
D	4	4
D	1	
D	1	

Model Spatial Data in Traditional DBMS

How about this? What is the data type of the boundary column? String?

Model Spatial Data in Traditional DBMS

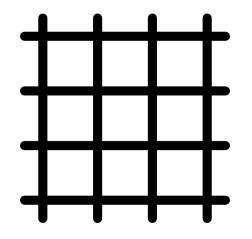
• Can we do y-axis • Concat(Polyline((0,0), (0,1), (1,1), (1,0)), Polyline(1,0), (2,0), (2,1), (1,1)) 1 (0,1) D (1,1)• And get Polyline((0,0), (0,1), (2,1), (1,0)) • Or ask questions like • Area_Size(Polyline((0,0), (0,1), (1,1), (1,0))) = ? С A 1050 And get 1 Polyline((0,0), (0,1), (2,1), (1,0)) • We can't if the data type is String. 3 2 (0,0)В (1,0)x-axis


$\bigcirc \bigcirc$

Spatial Data Models

- Spatial data models extends DBMS data models (i.e., requiring a DBMS engine)
- Provide rules to identify identifiable objects and properties of space
- Provide spatial data types at the atomic level, such as integer, string

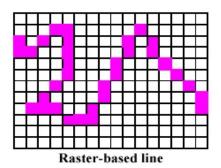
Spatial Data Vector Model


• Vector model: manage identifiable things with clear boundaries (or discrete locations), e.g., hotels, mountain peaks, cities, land-parcels

Polygonal icons created by Voysla - Flaticon

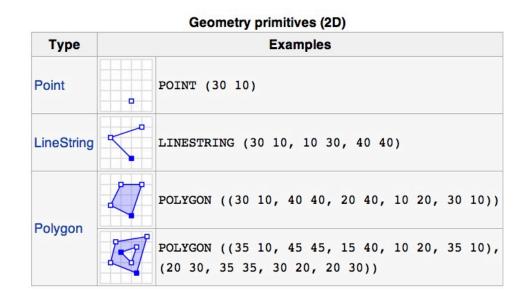
Spatial Data Raster Model

• **Raster** model: manage continuous and amorphous phenomenon, e.g., wetlands, satellite imagery, snowfall



Polygonal icons created by Voysla - Flaticon

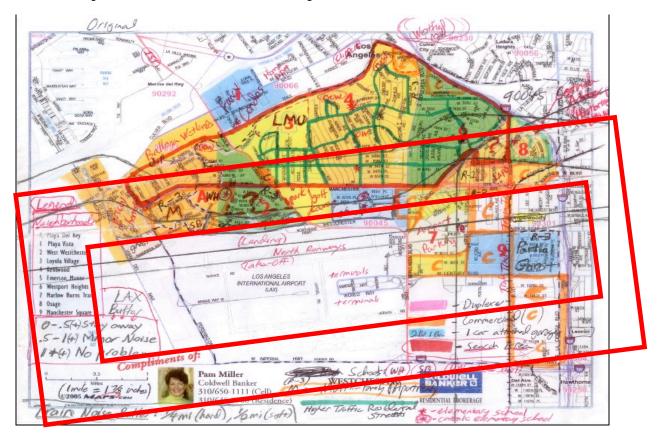
Raster and Vector Examples



Vector-based line

4753456	623412				
4753436	623424				
4753462	623478				
4753432	623482				
4753405	623429				
4753401	623508				
4753462	623555				
4753398	623634				
-					
Flat file					
00000000000000000					
0001100000100000					
1010100001010000					
1100100001010000					
0000100010001000					
0000100010000100					
000100010	0000010				
001000010	0000001				
011100100	0000001				
000011100					
000011100	00000000				
00000000000					

Φ

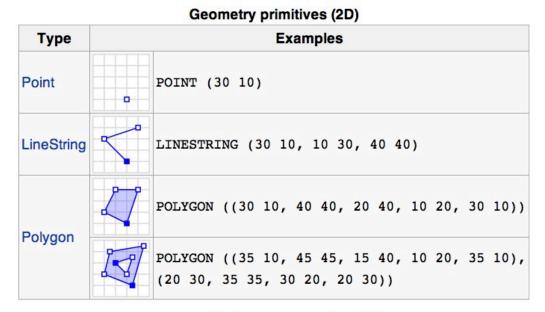


Well-known text (WKT)

Support Common Spatial Data Operations

- Direction queries
 - What is the nearest restaurant north of my current location?
- Distance queries
 - What are the restaurants within a 1-mile radius
- Topology queries
 - How many restaurants within the Los Angeles city boundary?

Spatial Query in Practice

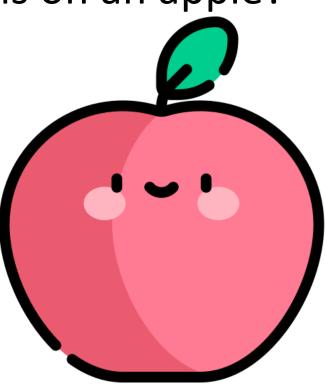


Credit: David Seidner

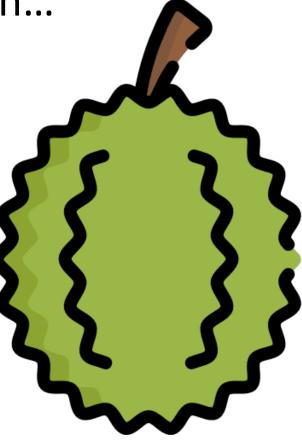
Spatial Coordinates and Reference Systems

How do we talk about locations on Earth?

• What are these numbers?

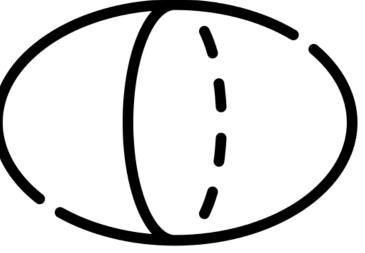


____ -----


How do we talk about locations on an apple?

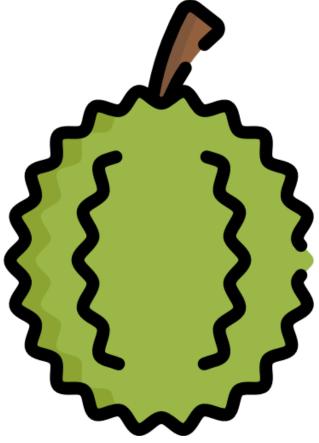
- Label each location on the apple an ID
 - e.g., location 1, location 2, location 3
- Give the apple to other people and use the labels to talk about locations
 OR
- Pick an origin point (e.g., top of the apple)
- Sequentially give each location a number based on its direction and distance to the origin point

What if it's a durian...

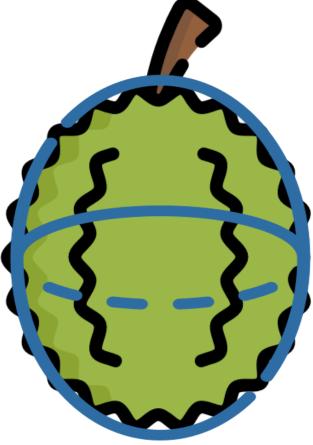

- Also, we don't want to have to pass the durian to other people
- Build a 3D model of the durian, repeat what we did for the apple
 - not as smooth as an apple
 - the 3D model becomes very complicated
- Wait, what is a model again?

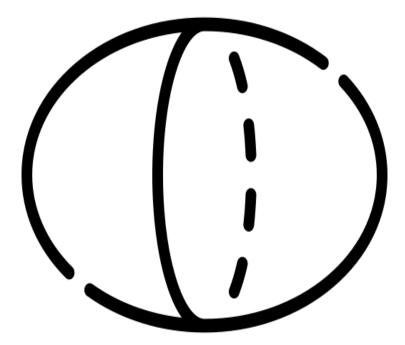
Sphere and Ellipsoid Models

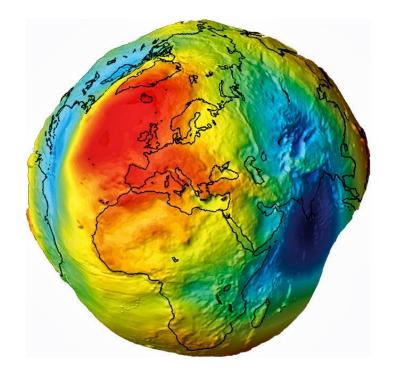

Sphere: one parameter (radius) Ellip.


Ellipsoid: three parameters

Sphere icons created by Nadiinko - Flaticon Ellipsoid icons created by Freepik - Flaticon

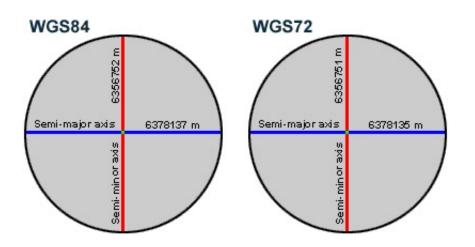

An ellipsoid model is easier to deal with than a durian...




An ellipsoid model is easier to deal with than a durian...*

- Let's find the "best" sphere to approximate our durian
- Use the sphere to talk about locations on the durian

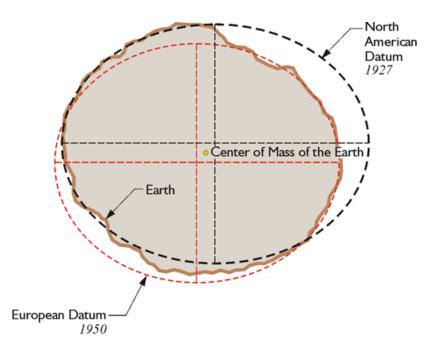
We can do the same for the Earth

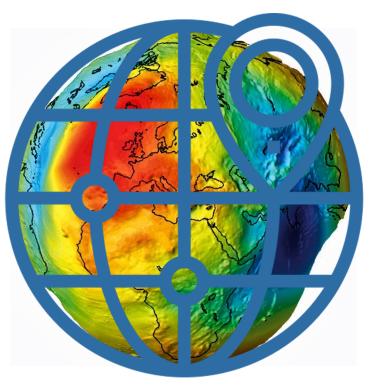


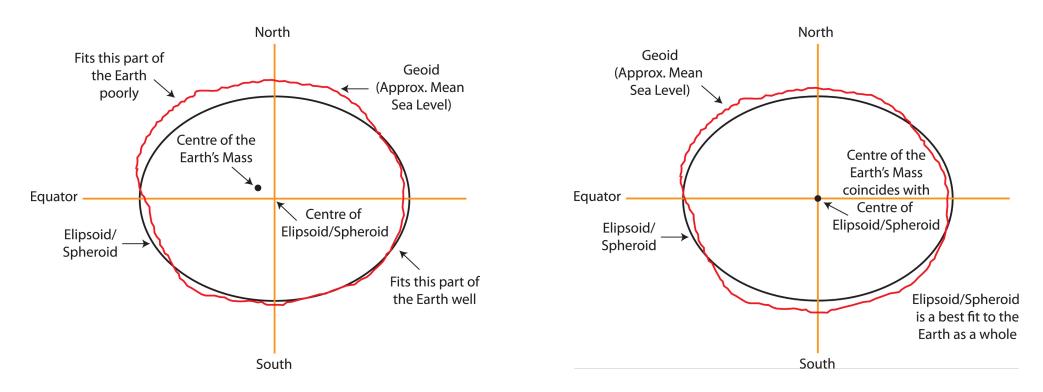
Geoid: a math figure of the Earth 36

https://en.wikipedia.org/wiki/Earth_Gravitational_Model

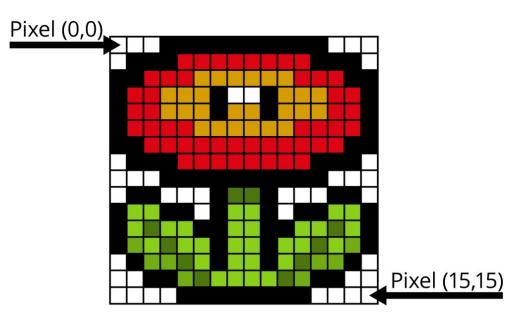
We can do the same for modeling Earth


- Problem 1:
 - How to decide the best ellipsoid?
 - i.e., how to select the parameters for the ellipsoid

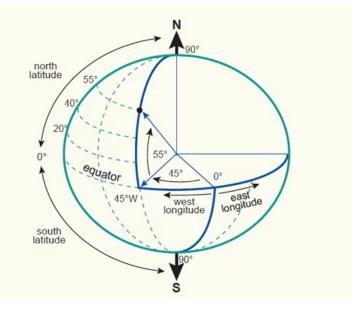



We can do the same for modeling Earth

- Problem 2:
 - How to align the ellipsoid to Earth?


Datum

https://www.icsm.gov.au/education/fundamentals-mapping/datums


Spatial Reference Systems

- A standardized method for assigning codes to locations so that locations can be found using the codes alone.
- In a geospatial coordinate system, the x-direction value is the easting, and the y-direction value is the northing.
- "Most" systems make both values positive.

Geographic Coordinates

- Geographic coordinates are the Earth's latitude and longitude system
 - ranging from 90 degrees south to 90 degrees north in latitude and 180 degrees west to 180 degrees east in longitude

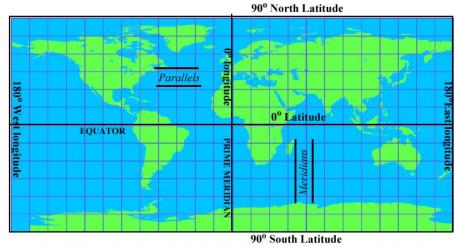
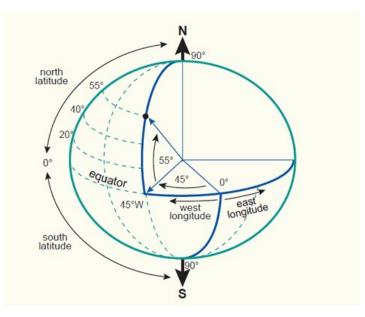



Figure 2.6 Geographic coordinates. The familiar latitude and longitude system, simply converting the angles at the earth's center to coordinates, gives the basic equirectangular projection. The map is twice as wide as high (360° east-west, 180° north-south).

Geographic Coordinates

Wait, how do we go from 3D ellipsoid to 2D maps?

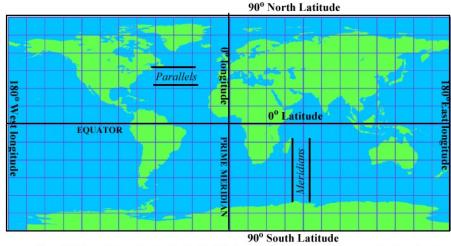
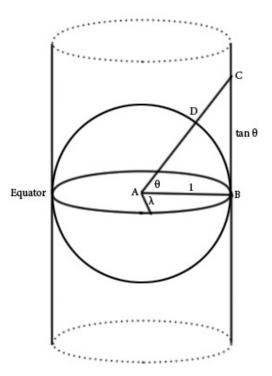



Figure 2.6 Geographic coordinates. The familiar latitude and longitude system, simply converting the angles at the earth's center to coordinates, gives the basic equirectangular projection. The map is twice as wide as high (360° east-west, 180° north-south).

Map Projections

- A mathematical transformation of the spherical or ellipsoidal Earth onto a flat map
- A projection that preserves the shape of features across the map is called conformal.
- A projection that preserves the area of a feature across the map is called equal area or equivalent.
- No flat map can be both equivalent and conformal. Most fall between the two as compromises.

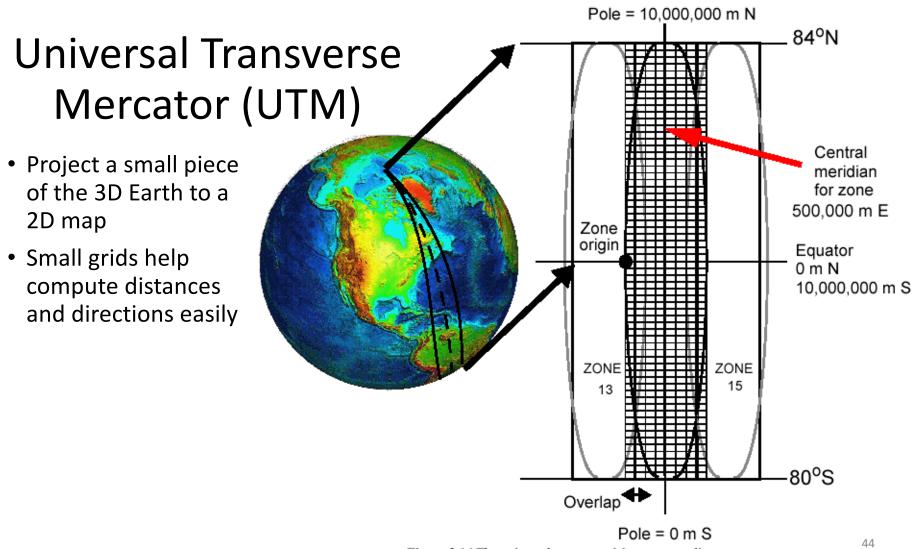


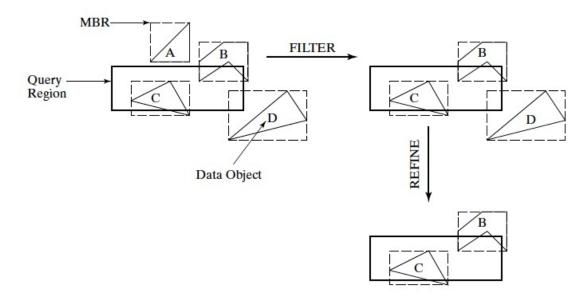
Figure 2.14 The universal transverse Mercator coordinate system.

Spatial Reference System Identifier (SRID)

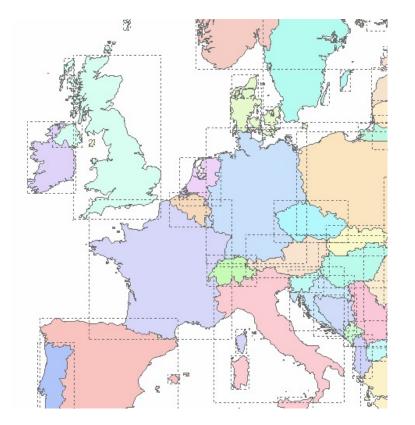
Home | Upload Your Own | List user-contributed references | List all references Previous: EPSG:2269: NAD83 / Oregon North (ft) | Next: EPSG:2271: NAD83 / Pennsylvania Input Coordinates: -12 4857353.371193, 58 **EPSG:2270** + NAD83 / Oregon South (ft) (Google it) • WGS84 Bounds: -124.6000, 42.0000, -116.8800, 44.5600 Projected Bounds: 3807130.6123, 142752.9914, 5905041.0689, 1080736.3326 Scope: Large and medium scale topographic mapping and engineering survey. Last Revised: Nov. 6, 2001 Area: USA - Oregon - SPCS - S Well Known Text as HTML Human-Readable OGC WKT Proj4 OGC WKT JSON • GML ESRI WKT .PRJ File USGS MapServer Mapfile | Python Mapnik XML | Python

- GeoServer
- PostGIS spatial ref sys INSERT statement
- Proj4js format

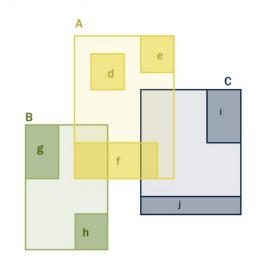
https://spatialreference.org/ref/

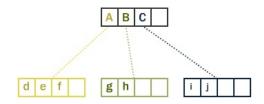

Spatial Query Language

- Spatial data types, e.g., point, lines, polygon, ...
- Spatial operations, e.g., overlap, distance, nearest neighbor, ...
- Callable from a query language (e.g., SQL) of underlying DBMS


SELECT S.name FROM Senator S WHERE S.district.Area() > 300

Spatial Index and Query Processing


- Efficient algorithms to answer spatial queries
- Common Strategy filter and refine
 - Filter Step: Query Region overlaps with MBRs of B,C and D
 - Refine Step: Query Region overlaps with B and C



Spatial Index and Query Processing – R-tree

R-tree Hierarchy

Example Queries

- Fundamental spatial algebra operations
 - Spatial selection: returning those objects satisfying a spatial predicate with the query object
 - "All cities in Bavaria"

SELECT sname FROM cities c WHERE c.center inside Bavaria.area

- "All rivers intersecting a query window"

SELECT * FROM rivers r WHERE r.route intersects Window

- "All big cities no more than 100 Kms from Hagen"

SELECT cname FROM cities c WHERE dist(c.center, Hagen.center) < 100 and c.pop > 500k

(conjunction with other predicates and query optimization)

Example Queries...*

- Spatial join: A join which compares any two joined objects based on a predicate on their spatial attribute values
 - "For each river pass through Bavaria, find all cities within less than 50 Km"

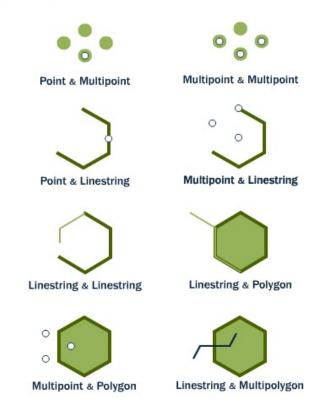
SELECT

r.rname, c.cname, length(intersection(r.route, c.area))

FROM rivers r, cities c

WHERE r.route intersects Bavaria.area and

dist(r.route,c.area) < 50 Km


SFSQL Example

📝 Quei	ry - worksho	p on postgres@	localhost:5432 *						
<u>File E</u> di	t <u>Q</u> uery Fav	ourites <u>M</u> acros	<u>View H</u> elp						
: 🗅 🖻	58 & 6	1 🔓 🖉 🔊 (🏚 🔎 🕨 🎼 🔚	CREATE TA	BLE points	s (name va	rchar, point	geometry)	;
SQL Edit	or Graphical Q	uery Builder		THEEDT TH	TO points	VALUES (Onigin' 'DOT	NT(0 0)!)	
INSE (' (' ('	<pre>SQL Editor Graphical Query Builder CREATE TABLE points (name varchar, point geometry); INSERT INTO points VALUES ('Origin', 'POINT(0 0)'), ('North', 'POINT(0 1)'), ('East', 'POINT(1 0)'), ('West', 'POINT(1 0)'), ('South', 'POINT(0 -1)'); SELECT name, ST AsText(point) FROM points;</pre>				<pre>INSERT INTO points VALUES ('Origin', 'POINT(0 0)'), ('North', 'POINT(0 1)'), ('East', 'POINT(1 0)'), ('West', 'POINT(-1 0)'), ('South', 'POINT(0 -1)'); SELECT name, ST_AsText(point) FROM points;</pre>				,
				>		× >			
Output pa	ane					x			
Data Ou	itput Explain	Messages History							
	name character v	st_astext ar text							
1	Origin	POINT(0 0)							
2	North	POINT(01)							
3	East	POINT(1 0)							
4	West	POINT(-1 0)							
5	South	POINT(0-1)							
ок.			Unix Lr	10 Col 1 Ch 258	5 rows.	941 ms			

ST_Intersects

Intersects

ST_Intersects(geometry A, geometry B) returns t (TRUE) if the two shapes have any space in common, i.e., if their boundaries or interiors intersect.

Query with SRID in Mind

SELECT SUM(ST_Length(the_geom)) FROM jacksonco streets WHERE namelow = 'E Main St'; Query - medford on postgres@localhost:5432 * File Edit Query Favourites Macros View Help medford on postgres@localhost:5432 × SELECT SUM(ST_Length(the_geom)) FROM jacksonco_streets The table "jacksonco_streets" has its WHERE namelow = 'E Hain St'; SRID as 2270 (EPSG:2270: NAD83 / Oregon South (ft)) Output pane × Data Output Explain Messages History sum double precision 33281.0533406005 1 What is the unit here? OK. Unix Ln 3 Col 1 Ch 91 1 rows. 7701 ms

Query with SRID in Mind*

SELECT SUM(ST_Length(ST_Transform(the_geom, 2839)))
FROM jacksonco_streets
WHERE namelow = 'E Main St';

🛿 Query - medford on postgres@localhost:5432 *	
File Edit Query Favourites Macros View Help	
🗄 🗋 🚰 📕 🐰 🛍 🖏 🖉 🧷 🧑 🍋 🔎 🕨 🍓 🖩 💡 🧯 medford on postgres@localhost:5432	~
<pre>SELECT SUM(ST_Length(ST_Transform(the_geom, 2839))) FROM jacksonco_streets WHERE namelow = 'E Main St';</pre>	
	>
Output pane	×
Data Output Explain Messages History	
sum double precision	
1 10144.0650582135	
SRID 2389 is a metric projection so what is the unit here?	
OK. Unix Ln 1 Col 1 Ch 1 1 rows. 1159	ms

Geometry Columns

File	<u>E</u> dit <u>V</u> iew <u>T</u> o	ols <u>H</u> elp						
	8 🤊 🖪	🔒 🔳	🐨 💡 👔 No lim	it 💌				
	oid	f_table_ [PK] cha	_catal f_table_sche iracte [PK] characte	f_table_name [PK] characte	f_geometry_ [PK] characte	coord_dimen: integer	srid integer	type character va
1	17344	"	public	cities	the_geom	2	4326	POINT
2	17620	"	public	citybuffers	the_geom	2	4326	MULTIPOLYGON
3	17360	u	public	countries	the_geom	2	4326	MULTIPOLYGON
4	17587	u	public	ocean	the_geom	2	4326	MULTIPOLYGON
5	17637		public	rivers	the_geom	2	4326	MULTILINESTRI
6	17605	u .	public	smallworld	the_geom	2	4326	POINT
*					1			

The geometry_columns view defines the dimension, geometry, and spatial reference system for each spatial table that contains a geometry type

Geometry Columns*

SELECT f_table_name, f_geometry_column, srid FROM geometry_columns;

🐓 Que	ry - medford on po	stgres@locall	iost:5432	2 *			
File Ed	it Query Favourites	Macros View	Help				
		AAA			E medford on	postgres@localhost:54	132 🗸
SELE	CT f_table_name,	f_geometry_	column,	srid F	ROM geometry_colum	ns;	
<	- 111						>
Output p Data Ou	and a second	es History					×
	f_table_name character varying	f_geometry_ character var					^
1	jacksonco streets	the_geom	2270				
2	tracts	the_geom	2270				
3	jacksonco_schools	the_geom	2270				
4	jacksonco_taxlots	the_geom	2270				
5	medford_buildings	the_geom	2270				
6	medford_citylimits	the_geom	2270				
7	medford_hydro	the_geom	2270				_
8	medford_parks	the_geom	2270	- 2			
9	medford_planzone	the_geom	2270				
10	medford_stormdrain	the_geom	2270				~
OK.	modiol d _stormal dir	che_goon	LETV	Unix	Ln 1 Col 3 Ch 3	13 rows.	94 ms

EPSG Registry

ion: 8.3.3	legistry	EPSG Geodetic Parameter				code	v by filter retrieve b	quera
r) help	login or reg	Welcome guest! I					y by men remove b	query
						Search on geometry		Name:
				West Longitude	North Latitude		Click to choose	
			earch			BBOX ‡		Type:
			and the second second	East Longitude	South Latitude		Search on description	
			Reset ?			Show Map		Area:
						BBOX \$	Click to choose	Type:

Welcome to the EPSG Geodetic Parameter Dataset

The EPSG Geodetic Parameter Dataset is a structured dataset of Coordinate Reference Systems and Coordinate Transformations, accessible through this data registry. The geographic coverage of the data is worldwide, but it is stressed that the dataset does not and cannot record all possible geodetic parameters in use around the world. The EPSG Geodetic Parameter Dataset is maintained by the Geodesy Subcommittee of OGP.

The EPSG Geodetic Parameter Dataset, offered through this OGP web registry service, may be used free of charge, but its use is subject to the acceptance of the <u>Terms of Use</u>.

Users may query and view the data and generate printable reports. The Registry supports anonymous (guest) access, but also permits the user to register for additional services, such as the export of the entire dataset as GML 3.2 dictionaries.

Additionally the Registry provides a web service interface, permitting geospatial software to query and retrieve geodetic parameters. Information on how to access the service is available in <u>Guidance Note 7-3: EPSG Registry Developers Guide</u>.

Links

- Release notes for current version
- Subscribe to Mailing List

- Guidance Note 7: EPSG Dataset supporting documentation
- Submit Feedback or Change Request

EPSG Registry*

quer	y by filter	retrieve by code		
Code:	4326		Retrieve	1

EPSG Geodetic Parameter Registry Version: 8.3.3 Welcome guest! I (login or register) I help

Note: Codes are only unique within a type, therefore multiple codes may be retrieved.

Reset ?

odeticCRS (geographic 2D) [WGS 84]	<u>metadata</u>	WGS 84[VALID]
Code: <i>EPSG::4326</i> Name: <i>WGS 84</i>		Scope: Horizontal component of 3D system. Used by the GPS satellite navigation system and for NATO milita
Type: geographic 2D		geodetic surveying.
⊕ Area of Use [World]	<u>metadata</u>	Information Source: EPSG, See 3D (
Geodetic Datum [World Geodetic System 1984]	metadata	for original information source.
Code: EPSG::6326		Data Source: OGP
Name: World Geodetic System 1984		Revision Date: 2007-08-27
슈 Aliases		Change ID: EPSG::2002.151
Anchor Definition: Defined through a consistent set of station coordinates. These have changed with time: by 0.7	m on	Change ID: EPSG::2003.370
29/06/1994 (G730), a further 0.2m on 29/01/1997 (G873) and a further 0.06m on 20/01/2002 (G1150) and on B/02/2	012	Change ID: EPSG::2006.810
(G1674).		Change ID: EPSG::2007.079
Realization Epoch (UTC): 1984		
- Area of Use [World]	metadata	GML
- Ellipsoid [WGS 84]	metadata	
Code: EPSG::7030		
Name: WGS 84		
수 Aliases		
Shape: Ellipsoid		
Semi-Major Axis: 6378137 metre		
Inverse Flattening: 298.257223563 unity		
+ Prime Meridian [Greenwich]	metadata	
എ Ellipsoidal CS [Ellipsoidal 2D CS. Axes: latitude, longitude. Orientations: north, east. UoM:	degree]	
Conversion Metadata		
에서 전 16년 17년 17년 17년 17년 17년 17년 17년 17년 17년 17		

Coordinate System Support in Spatial Databases: spatial_ref_sys

	srid [PK] integer	auth_name character v		srtext proj4text character varying(2048) character varying(2048)
1	2000	EPSG	2000	PROJCS["Anguilla 1957 / British West Indie +proj=tmerc +lat_0=0 +lon_0=-62 +k=0.99950000
2	2001	EPSG	2001	PROJCS["Antigua 1943 / British West Indies +proj=tmerc +lat_0=0 +lon_0=-62 +k=0.99950000
3	2002	EPSG	2002	PROJCS["Dominica 1945 / British West Indie +proj=tmerc +lat_0=0 +lon_0=-62 +k=0.99950000
4	2003	EPSG	2003	PROJCS["Grenada 1953 / British West Indies +proj=tmerc +lat_0=0 +lon_0=-62 +k=0.99950000
5	2004	EPSG	2004	PROJCS["Montserrat 1958 / British West Ind +proj=tmerc +lat_0=0 +lon_0=-62 +k=0.99950000
6	2005	EPSG	2005	PROJCS["St. Kitts 1955 / British West Indi +proj=tmerc +lat_0=0 +lon_0=-62 +k=0.99950000
7	2006	EPSG	2006	PROJCS["St. Lucia 1955 / British West Indi +proj=tmerc +lat_0=0 +lon_0=-62 +k=0.99950000
8	2007	EPSG	2007	PROJCS["St. Vincent 45 / British West Indi +proj=tmerc +lat_0=0 +lon_0=-62 +k=0.99950000
9	2008	EPSG	2008	PROJCS["NAD27(CGQ77) / SCoPQ zone 2",GEOGC +proj=tmerc +lat_0=0 +lon_0=-55.5 +k=0.9999 +
10	2009	EPSG	2009	PROJCS["NAD27(CGQ77) / SCoPQ zone 3", GEOGC +proj=tmerc +lat_0=0 +lon_0=-58.5 +k=0.9999 +
11	2010	EPSG	2010	PROJCS["NAD27(CGQ77) / SCoPQ zone 4",GEOGC +proj=tmerc +lat_0=0 +lon_0=-61.5 +k=0.9999 +
12	2011	EPSG	2011	PROJCS["NAD27(CGQ77) / SCoPQ zone 5",GEOGC +proj=tmerc +lat_0=0 +lon_0=-64.5 +k=0.9999 +
13	2012	EPSG	2012	PROJCS["NAD27(CGQ77) / SCoPQ zone 6",GEOGC +proj=tmerc +lat_0=0 +lon_0=-67.5 +k=0.9999 +
14	2013	EPSG	2013	PROJCS["NAD27(CGQ77) / SCoPQ zone 7",GEOGC +proj=tmerc +lat_0=0 +lon_0=-70.5 +k=0.9999 +
15	2014	EPSG	2014	PROJCS["NAD27(CGQ77) / SCoPQ zone 8",GEOGC +proj=tmerc +lat_0=0 +lon_0=-73.5 +k=0.9999 +
16	2015	EPSG	2015	PROJCS["NAD27(CGQ77) / SCoPQ zone 9",GEOGC +proj=tmerc +lat_0=0 +lon_0=-76.5 +k=0.9999 +
17	2016	EPSG	2016	PROJCS["NAD27(CGQ77) / SCoPQ zone 10",GEOG +proj=tmerc +lat_0=0 +lon_0=-79.5 +k=0.9999 +
18	2017	EPSG	2017	PROJCS["NAD27(76) / MTM zone 8",GEOGCS["NA +proj=tmerc +lat_0=0 +lon_0=-73.5 +k=0.9999 +

Every Geometry Column is associated with a Spatial Reference System

Geography VS Geometry

- The Geometry column type can hold geometric data of any type and in any (or no) projection and CRS.
 - not optimized for dealing with geodetic measurements (distances on the sphere)
- The Geography type, (while able to handle geodetic measurements), are much more limited
 - there are fewer compatible functions when compared to Geometry

Summary

- Effective spatial data management strategies can enable many spatial AI tasks
- SDBMS is a software module
 - works with an underlying DBMS
 - provides spatial ADTs callable from a query language
 - provides methods for efficient processing of spatial queries (e.g., using index)
- Components of SDBMS include
 - spatial data models, spatial data types, and operators
 - information about common spatial reference systems
 - spatial query language, processing, and optimization
- Always handle spatial data with reference systems in mind!

Spatial Data Can be Huge

- How to deal with large spatial data?
 - Next time -MapReduce

OpenStreetMap Data Extracts

The OpenStreetMap data files provided on this server do **not** contain the user names, user IDs and changeset IDs of the OSM c Extracts with full metadata are available to OpenStreetMap contributors only.

Welcome to Geofabrik's free download server. This server has data extracts from the <u>OpenStreetMap project</u> which are normally data download service is offered free of charge by Geofabrik GmbH.

Willkommen auf dem Geofabrik-Downloadserver. Hier gibt es Daten-Auszüge aus dem <u>OpenStreetMap-Projekt</u>, die normalerweise vertraut zu machen, bevor Sie mit den Daten arbeiten.) Diese Downloads werden von der Geofabrik GmbH kostenlos angeboten.

Sub Region	Quick Links						
	.osm	.pbf	.shp.zip	.osm.bz2			
Africa	[.osm.pbf]	(4.9 GB)	×	[.osm.bz2]			
Antarctica	[.osm.pbf]	(31.0 MB)	[.shp.zip]	[.osm.bz2]			
Asia	[.osm.pbf]	(10.4 GB)	×	[.osm.bz2]			
Australia and Oceania	[.osm.pbf]	(945 MB)	×	[.osm.bz2]			
Central America	[.osm.pbf]	(501 MB)	×	[.osm.bz2]			
Europe	[.osm.pbf]	(24.5 GB)	×	[.osm.bz2]			
North America	[.osm.pbf]	(11.1 GB)	×	[.osm.bz2]			
South America	[.osm.pbf]	(2.7 GB)	×	[.osm.bz2]			

Technical details about this download service.

Useful Resources

- PostGIS Workshop: https://postgis.net/workshops/postgis-intro/
- QGIS Tutorial: <u>https://www.qgistutorials.com/en/</u>

Acknowledgements

- Gil, Yolanda (Ed.) Introduction to Computational Thinking and Data Science. Available from http://www.datascience4all.org
- 'image: Flaticon.com'. These slides have been designed using resources from Flaticon.com
- This presentation was adapted from the slides provided from the textbook: Spatial Databases: A Tour. Authors: Shashi Shekhar and Sanjay Chawla. Publisher: Prentice Hall, 2003, from the database course slides provided by Cyrus Shahabi, from Hart Hartmut Guting's VLDB Journal v3, n4, October 1994, from Boundless OpenGeo tutorial.
- These slides are adapted from the slides provided by Keith Clarke from his course and textbook Getting Started with Geographic Information System, Prentice Hall and from Craig Knoblock

These materials are released under a CC-BY License

https://creativecommons.org/licenses/by/2.0/

You are free to:

Share — copy and redistribute the material in any medium or format Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Artwork taken from other sources is acknowledged where it appears. Artwork that is not acknowledged is by the author.

Please credit as: Chiang, Yao-Yi Introduction to Spatial Artificial Intelligence. Available from https://yaoyichi.github.io/spatial-ai.html

If you use an individual slide, please place the following at the bottom: "Credit: https://yaoyichi.github.io/spatial-ai.html

We welcome your feedback and contributions.

Credit: http://www.datascience4all.org/