
Map-Reduce (Part II)

Thanks for source slides and material to: J. Leskovec, A. Rajaraman,
J. Ullman: Mining of Massive Datasets (http://www.mmds.org)
Also slides from Yijun Lin, Ann Chervenak, and Wensheng Wu

Yao-Yi Chiang
Computer Science and Engineering

University of Minnesota
yaoyi@umn.edu

http://www.mmds.org/

MAP:
Read input and
produces a set of
key-value pairs

Group by key:
Collect all pairs with

same key
(Hash merge, Shuffle,

Sort, Partition)

Reduce:
Collect all values
belonging to the
key and output

Map-Reduce: A diagram

Big document

All phases are distributedwithmany tasks doing thework

Map-Reduce: In Parallel

Hash function

MapReduce environment takes care of:
• Partitioning the input data
• Scheduling the program’s execution across a set of nodes
• Performing the group by key step

• Handling machine failures
• Managing required inter-machine communication

Map-Reduce: Environment

• Input and final output are stored on a distributed
file system (DFS)
• Scheduler tries to schedule map tasks “close” to

physical storage location of input data

• Intermediate results are stored on local file system of
Map workers
e.g., output of the map step

• Output is often input to another Map-Reduce task

Data Flow

• Primary node takes care of coordination:
• Task status: idle, in-progress, completed
• Idle tasks get scheduled as workers become

available
• When a map task completes, it sends the primary the

location and sizes of its R intermediate files, one for
each reducer (R = number of reducers)

• Primary pushes this info to reducers

• Primary pings workers periodically to detect
failures

Coordination: Primary

Dealing with Failures

• Map worker failure
• Map tasks completed or in-process at worker are

reset to idle
• Idle tasks eventually rescheduled on other worker(s)

Dealing with Failures

• Map worker failure
• Map tasks completed or in-process at worker are

reset to idle
• Idle tasks eventually rescheduled on other worker(s)

• Reduce worker failure
• Only in-process tasks are reset to idle
• Idle Reduce tasks restarted on other worker(s)

Dealing with Failures

• Map worker failure
• Map tasks completed or in-process at worker are

reset to idle
• Idle tasks eventually rescheduled on other worker(s)

• Reduce worker failure
• Only in-process tasks are reset to idle
• Idle Reduce tasks restarted on other worker(s)

• Primary failure
• Map-reduce task is aborted and client is notified

• M map tasks, R reduce tasks

How many map and reduce jobs?

• M map tasks, R reduce tasks
• Rule of a thumb:
• Make M much larger than the number of nodes in

the cluster
• One DFS chunk per map task is common
• Improves dynamic load balancing and speeds up

recovery from worker failures

How many map and reduce jobs?

• M map tasks, R reduce tasks
• Rule of a thumb:
• Make M much larger than the number of nodes in

the cluster
• One DFS chunk per map task is common
• Improves dynamic load balancing and speeds up

recovery from worker failures

• Usually R is smaller than M
• Output is spread across R files
• Google example: Often use 200,000 map tasks,

5000 reduce tasks on 2000 machines

How many map and reduce jobs?

• Combiner combines the values of all keys of a single
mapper (single node)

Much less data needs to be copied and shuffled!
Works if reduce function is commutative and associative

Refinement: Combiners

• Control how keys get partitioned
• Reduce needs to ensure that records with the same

intermediate key end up at the same worker

• System uses a default partition function:
• hash(key) mod R

• Sometimes useful to override the hash function:
• E.g., hash(hostname(URL)) mod R ensures URLs from a

host to end up in the same output file

Refinement: Partition Function

• Google’s MapReduce
• Not available outside Google

• Hadoop
• Open-source implementation in Java
• Uses HDFS for stable storage
• Download: http://hadoop.apache.org/releases.html

• Spark

Implementations

http://hadoop.apache.org/releases.html

Emplyee ⨝ Assigned Departments

Name SSN
Sue 999999999
Tony 777777777

EmpSSN DepName
999999999 Accounts
777777777 Sales
777777777 Marketing

Name SSN EmpSSN DepName
Sue 999999999 999999999 Accounts
Tony 777777777 777777777 Sales
Tony 777777777 777777777 Marketing

Assigned DepartmentsEmployee

Example: Relational Join

key=999999999, value=(Employee, Sue, 999999999)
key=777777777, value=(Employee, Tony, 777777777)
key=999999999, value=(Department, 999999999, Accounts)
key=777777777, value=(Department, 777777777, Sales)
key=777777777, value=(Department, 777777777, Marketing)

• Map Task: Emit (key, value) pair
• Key is key used for join
• Value is a tuple with all fields from table (including the table name)

Example: Relational Join

Name SSN
Sue 999999999
Tony 777777777

Employee

EmpSSN DepName
999999999 Accounts
777777777 Sales
777777777 Marketing

Assigned Departments

key=999999999, values=[(Employee, Sue, 999999999),
(Department, 999999999, Accounts)]

key=777777777, values=[(Employee, Tony, 777777777),
(Department, 777777777, Sales),
(Department, 777777777, Marketing)]

Sue, 999999999, 999999999, Accounts

Tony, 777777777, 777777777, Sales
Tony, 777777777, 777777777, Marketing

Example: Relational Join

• Group by Key: groups together all values (tuples) associated
with each key

• Reduce task: emit joined values (without table names)

• Goal: Sort a very large list of (firstName, lastName) pairs
by lastName followed by firstName

• Map task:

• Reduce task:

Example: Distributed Sort

• Map task
• Emit (lastName, firstName)

• Group by keys:
• Group together entries with same last name
• Divide into non-overlapping alphabetical ranges (sorting)
• Keys are sorted in alphabetical order

• Reduce task
• Processes one key at a time
• For each (lastName, list(firstName)), emit (lastName, firstName)

in alphabetical order (sorting)
• Merge output from all Reduce tasks (e.g., write)

Example: Distributed Sort

Example: Matrix Multiplication

• Assume two matrices A and B, and AB = C

• Aij is the element in row i and column j of matrix A
• Similarly for B and C

• Cik = ∑j Aij× Bjk

• Cik depends on the ith row of A, that is Aij for all j, and the
kth column of B, that is Bjk for all j

11 10

9 14

A B C

e.g., C11 = 1×1 + 3×0
+ 2×5 = 11

Matrix Multiplication
Map-Reduce (One phase)

C = A X B
A has dimensions L x M
B has dimensions M x N
C has dimensions L x N
Matrix Multiplication: C[i, k] = SUMj (A[i, j] x B[j, k])

Map task:

Reduce task:

C

X

A B

=

Matrix Multiplication
Map-Reduce (One phase)

C = A X B
A has dimensions L x M

B has dimensions M x N

C has dimensions L x N

Matrix Multiplication: C[i, k] = SUMj (A[i, j] x B[j, k])

Map task:
for each element (i,j) of A, emit ((i,k), A[i,j]) for k in 1..N
e.g., For A[1, 1] emit ((1, 1), 1), ((1, 2), 1)

For A[1, 2] emit ((1, 1), 3), ((1, 2), 3)
For A[2, 1] emit ((2, 1), 4), ((2, 2), 4)

for each element (j,k) of B, emit ((i,k), B[j,k]) for i in 1..L
e.g., For B[1, 1] emit ((1, 1), 1), ((2, 1), 1)

For B[2, 1] emit ((1, 1), 0), ((2, 1), 0)
For B[1, 2] emit ((1, 2), 3), ((2, 2), 3)

11 10

9 14
A B C

Matrix Multiplication
Map-Reduce (One phase)

C = A X B
A has dimensions L x M

B has dimensions M x N

C has dimensions L x N

Matrix Multiplication: C[i, k] = SUMj (A[i, j] x B[j, k])

Map task:
for each element (i,j) of A, emit ((i,k), A[i,j]) for k in 1..N
Better: emit ((i,k), (‘A’, i, j, A[i,j])) for k in 1..N

Or just emit ((i,k), (‘A’, j, A[i,j])) for k in 1..N
for each element (j,k) of B, emit ((i,k), B[j,k]) for i in 1..L
Better: emit ((i,k), (‘B’, j, k, B[j,k])) for i in 1..L

Or just emit ((i,k), (‘B’, j, B[j,k])) for i in 1..L

C

X

A B

=

Matrix Multiplication
Map-Reduce (One phase)

C = A X B
A has dimensions L x M

B has dimensions M x N

C has dimensions L x N

Matrix Multiplication: C[i, k] = SUMj (A[i, j] x B[j, k])

Map task:
for each element (i,j) of A, emit ((i,k), (‘A’, i, j, A[i,j])) for k in 1..N
e.g., For A[1, 1] emit ((1, 1), (‘A’, 1, 1, 1)), ((1, 2), (‘A’, 1, 1, 1))

For A[1, 2] emit ((1, 1), (‘A’, 1, 2, 3)), ((1, 2), (‘A’, 1, 2, 3))
For A[2, 1] emit ((2, 1), (‘A’, 2, 1, 4)), ((2, 2), (‘A’, 2, 1, 4))

for each element (j,k) of B, emit ((i,k), (‘B’, j, k, B[j,k])) for i in 1..L
e.g., For B[1, 1] emit ((1, 1), (‘B’, 1, 1, 1)), ((2, 1), (‘B’, 1, 1, 1))

For B[2, 1] emit ((1, 1), (‘B’, 2, 1, 0)), ((2, 1), (‘B’, 2, 1, 0))
For B[1, 2] emit ((1, 2), (‘B’, 1, 2, 3)), ((2, 2), (‘B’, 1, 2, 3))

11 10

9 14
A B C

C[i,k] = Sumj (A[i,j] x B[j,k]), C is L x N
In the map phase:
• for each element (i,j) of A, emit ((i,k), (‘A’, i, j, A[i,j])) for k in 1..N
• for each element (j,k) of B, emit ((i,k), (‘B’, j, k, B[j,k])) for i in 1..L

e.g.,
C[1,1] = A[1,1] * B[1,1] + A[1,2] * B[2,1] + A[1,3] * B[3,1] + A[1,4] * B[4,1] + A[1,5] * B[5,1]
C[1,2] = A[1,1] * B[1,2] + A[1,2] * B[2,2] + A[1,3] * B[3,2] + A[1,4] * B[4,2] + A[1,5] * B[5,2]
C[2,1] = A[2,1] * B[1,1] + A[2,2] * B[2,1] + A[2,3] * B[3,1] + A[2,4] * B[4,1] + A[2,5] * B[5,1]
C[3,1] = A[3,1] * B[1,1] + A[3,2] * B[2,1] + A[3,3] * B[3,1] + A[3,4] * B[4,1] + A[3,5] * B[5,1]
Map phase: For A[1,2], emit ((1, k), (‘A’, 1, 2, A[1,2])) for k in 1..2

emit ((1,1)(‘A’, 1, 2, A[1,2])) ((1,2)(‘A’, 1, 2, A[1,2]))

For B[3,1], emit ((i, 1), (‘B’, 3, 1, B[3,1])) for i in 1..3

emit ((1,1), (‘B’, 3, 1,B[3,1])), ((2,1)(‘B’, 3, 1,B[3,1])), ((3,1)(‘B’, 3, 1,B[3,1]))
26

C

X

A B

=

Matrix Multiplication
Map-Reduce (Two phase)

Idea: 1, Multiply the appropriate values in 1st MapReduce phase
2, Add up in 2nd MapReduce phase

Try this tonight!

Data set is truly “big”
• Terabytes, not tens of gigabytes
• Hadoop/MapReduce designed for

terabyte/petabyte scale computation
• Most real-world problems process less than 100 GB

of input
• Microsoft, Yahoo: median job under 14 GB
• Facebook: 90% of jobs under 100 GB

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

General Characteristic of Good Problem
for Map-Reduce

Don’t need fast response time
• When submitting jobs, Hadoop latency can be 1 min
• Not well-suited for problems that require faster

response time
• online purchases, transaction processing

• A good pre-computation engine
• E.g., pre-compute related items for every item in

inventory

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

General Characteristic of Good Problem
for Map-Reduce

• Good for applications that work in batch mode
• Runs over entire data set
• Takes time to initiate, run;
• Shuffle step can be time-consuming;

• Does not provide good support for random
access to datasets
• Extensions: Hive, Dremel, Shark, Amplab

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

General Characteristic of Good Problem
for Map-Reduce

• Best suited for data that can be expressed as key-
value pairs without losing context, dependencies
• Graph data is hard to process using Map-Reduce

• Implicit relationships: edges, sub-trees, child/parent
relationships, weights, etc.

• Graph algorithms need information about the entire
graph for each iteration

• Hard to break into independent chunks for Map tasks

• Alternatives: Google’s Pregel, Apache Giraph

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

General Characteristic of Good Problem
for Map-Reduce

Other problems/data NOT suited for MapReduce
• Tasks that need results of intermediate steps to

compute results of current step
• Interdependencies among tasks
• Map tasks must be independent

• Some machine learning algorithms
• Gradient-based learning

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

General Characteristic of Good Problem
for Map-Reduce

Summary: Good candidates for Map-Reduce:
• Jobs that process huge quantities of data and

either summarize or transform the content
• Collected data has elements that can easily be

captured with an identifier (key) and
corresponding value

33Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

General Characteristic of Good Problem
for Map-Reduce

