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MAP:
Read input and
produces a set of
key-value pairs

Group by key:
Collect all pairs with

same key
(Hash merge, Shuffle, 

Sort, Partition)

Reduce:
Collect all values
belonging to the
key and output

Map-Reduce: A diagram

Big document



All phases are distributedwithmany tasks doing thework

Map-Reduce: In Parallel

Hash function



MapReduce environment takes care of:
• Partitioning the input data
• Scheduling the program’s execution across a set of nodes
• Performing the group by key step

• Handling machine failures
• Managing required inter-machine communication

Map-Reduce: Environment



• Input and final output are stored on a distributed 
file system (DFS)
• Scheduler tries to schedule map tasks “close” to 

physical storage location of input data

• Intermediate results are stored on local file system of 
Map workers
e.g., output of the map step

• Output is often input to another Map-Reduce task

Data Flow



• Primary node takes care of coordination:
• Task status: idle, in-progress, completed
• Idle tasks get scheduled as workers become 

available
• When a map task completes, it sends the primary the

location and sizes of its R intermediate files, one for
each reducer (R = number of reducers)

• Primary pushes this info to reducers

• Primary pings workers periodically to detect
failures

Coordination: Primary



Dealing with Failures

• Map worker failure
• Map tasks completed or in-process at worker are 

reset to idle
• Idle tasks eventually rescheduled on other worker(s)
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Dealing with Failures

• Map worker failure
• Map tasks completed or in-process at worker are 

reset to idle
• Idle tasks eventually rescheduled on other worker(s)

• Reduce worker failure
• Only in-process tasks are reset to idle
• Idle Reduce tasks restarted on other worker(s)

• Primary failure
• Map-reduce task is aborted and client is notified



• M map tasks, R reduce tasks

How many map and reduce jobs?



• M map tasks, R reduce tasks
• Rule of a thumb:
• Make M much larger than the number of nodes in 

the cluster
• One DFS chunk per map task is common
• Improves dynamic load balancing and speeds up 

recovery from worker failures

How many map and reduce jobs?



• M map tasks, R reduce tasks
• Rule of a thumb:
• Make M much larger than the number of nodes in 

the cluster
• One DFS chunk per map task is common
• Improves dynamic load balancing and speeds up 

recovery from worker failures

• Usually R is smaller than M
• Output is spread across R files
• Google example: Often use 200,000 map tasks, 

5000 reduce tasks on 2000 machines

How many map and reduce jobs?



• Combiner combines the values of all keys of a single
mapper (single node)

Much less data needs to be copied and shuffled!
Works if reduce function is commutative and associative

Refinement: Combiners



• Control how keys get partitioned
• Reduce needs to ensure that records with the same

intermediate key end up at the same worker

• System uses a default partition function:
• hash(key) mod R

• Sometimes useful to override the hash function:
• E.g., hash(hostname(URL)) mod R ensures URLs from a

host to end up in the same output file

Refinement: Partition Function



• Google’s MapReduce
• Not available outside Google

• Hadoop
• Open-source implementation in Java
• Uses HDFS for stable storage
• Download: http://hadoop.apache.org/releases.html

• Spark

Implementations

http://hadoop.apache.org/releases.html


Emplyee ⨝ Assigned Departments

Name SSN
Sue 999999999
Tony 777777777

EmpSSN DepName
999999999 Accounts
777777777 Sales
777777777 Marketing

Name SSN EmpSSN DepName
Sue 999999999 999999999 Accounts
Tony 777777777 777777777 Sales
Tony 777777777 777777777 Marketing

Assigned DepartmentsEmployee

Example: Relational Join



key=999999999, value=(Employee, Sue, 999999999) 
key=777777777, value=(Employee, Tony, 777777777) 
key=999999999, value=(Department, 999999999, Accounts) 
key=777777777, value=(Department, 777777777, Sales) 
key=777777777, value=(Department, 777777777, Marketing)

• Map Task: Emit (key, value) pair
• Key is key used for join
• Value is a tuple with all fields from table (including the table name)

Example: Relational Join

Name SSN
Sue 999999999
Tony 777777777

Employee

EmpSSN DepName
999999999 Accounts
777777777 Sales
777777777 Marketing

Assigned Departments



key=999999999, values=[(Employee, Sue, 999999999),
(Department, 999999999, Accounts)]

key=777777777, values=[(Employee, Tony, 777777777),
(Department, 777777777, Sales),
(Department, 777777777, Marketing)]

Sue, 999999999, 999999999, Accounts

Tony, 777777777, 777777777, Sales
Tony, 777777777, 777777777, Marketing

Example: Relational Join

• Group by Key: groups together all values (tuples) associated 
with each key

• Reduce task: emit joined values (without table names)



• Goal: Sort a very large list of (firstName, lastName) pairs 
by lastName followed by firstName

• Map task:

• Reduce task:

Example: Distributed Sort



• Map task
• Emit (lastName, firstName)

• Group by keys: 
• Group together entries with same last name
• Divide into non-overlapping alphabetical ranges (sorting)
• Keys are sorted in alphabetical order

• Reduce task
• Processes one key at a time 
• For each (lastName, list(firstName)), emit (lastName, firstName) 

in alphabetical order (sorting)
• Merge output from all Reduce tasks (e.g., write)

Example: Distributed Sort



Example: Matrix Multiplication

• Assume two matrices A and B, and AB = C

• Aij is the element in row i and column j of matrix A
• Similarly for B and C

• Cik = ∑j Aij× Bjk

• Cik depends on the ith row of A, that is Aij for all j, and the 
kth column of B, that is Bjk for all j

11 10

9 14

A B C

e.g., C11 = 1×1 + 3×0
+ 2×5 = 11



Matrix Multiplication
Map-Reduce (One phase)

C = A X B
A has dimensions L x M 
B has dimensions M x N
C has dimensions L x N
Matrix Multiplication: C[i, k] = SUMj (A[i, j] x B[j, k])

Map task:

Reduce task:

C

X

A B

=



Matrix Multiplication
Map-Reduce (One phase)

C = A X B
A has dimensions L x M 

B has dimensions M x N

C has dimensions L x N

Matrix Multiplication: C[i, k] = SUMj (A[i, j] x B[j, k])

Map task:
for each element (i,j) of A, emit ((i,k), A[i,j]) for k in 1..N
e.g., For A[1, 1] emit ((1, 1), 1), ((1, 2), 1) 

For A[1, 2] emit ((1, 1), 3), ((1, 2), 3)
For A[2, 1] emit ((2, 1), 4), ((2, 2), 4)

for each element (j,k) of B, emit ((i,k), B[j,k]) for i in 1..L
e.g., For B[1, 1] emit ((1, 1), 1), ((2, 1), 1)  

For B[2, 1] emit ((1, 1), 0), ((2, 1), 0)
For B[1, 2] emit ((1, 2), 3), ((2, 2), 3)

11 10

9 14
A B C



Matrix Multiplication
Map-Reduce (One phase)

C = A X B
A has dimensions L x M 

B has dimensions M x N

C has dimensions L x N

Matrix Multiplication: C[i, k] = SUMj (A[i, j] x B[j, k])

Map task:
for each element (i,j) of A, emit ((i,k), A[i,j]) for k in 1..N
Better: emit ((i,k), (‘A’, i, j, A[i,j])) for k in 1..N

Or just emit ((i,k), (‘A’, j, A[i,j])) for k in 1..N
for each element (j,k) of B, emit ((i,k), B[j,k]) for i in 1..L
Better: emit ((i,k), (‘B’, j, k, B[j,k])) for i in 1..L

Or just emit ((i,k), (‘B’, j, B[j,k])) for i in 1..L

C

X

A B

=



Matrix Multiplication
Map-Reduce (One phase)

C = A X B
A has dimensions L x M 

B has dimensions M x N

C has dimensions L x N

Matrix Multiplication: C[i, k] = SUMj (A[i, j] x B[j, k])

Map task:
for each element (i,j) of A, emit ((i,k), (‘A’, i, j, A[i,j])) for k in 1..N
e.g., For A[1, 1] emit ((1, 1), (‘A’, 1, 1, 1)), ((1, 2), (‘A’, 1, 1, 1))

For A[1, 2] emit ((1, 1), (‘A’, 1, 2, 3)), ((1, 2), (‘A’, 1, 2, 3))
For A[2, 1] emit ((2, 1), (‘A’, 2, 1, 4)), ((2, 2), (‘A’, 2, 1, 4))

for each element (j,k) of B, emit ((i,k), (‘B’, j, k, B[j,k])) for i in 1..L
e.g., For B[1, 1] emit ((1, 1), (‘B’, 1, 1, 1)), ((2, 1), (‘B’, 1, 1, 1))

For B[2, 1] emit ((1, 1), (‘B’, 2, 1, 0)), ((2, 1), (‘B’, 2, 1, 0))
For B[1, 2] emit ((1, 2), (‘B’, 1, 2, 3)), ((2, 2), (‘B’, 1, 2, 3))

11 10

9 14
A B C



C[i,k] = Sumj (A[i,j] x B[j,k]), C is L x N
In the map phase:
• for each element (i,j) of A, emit ((i,k), (‘A’, i, j, A[i,j])) for k in 1..N
• for each element (j,k) of B, emit ((i,k), (‘B’, j, k, B[j,k])) for i in 1..L 

e.g.,
C[1,1] = A[1,1] * B[1,1] + A[1,2] * B[2,1] + A[1,3] * B[3,1] + A[1,4] * B[4,1] + A[1,5] * B[5,1]
C[1,2] = A[1,1] * B[1,2] + A[1,2] * B[2,2] + A[1,3] * B[3,2] + A[1,4] * B[4,2] + A[1,5] * B[5,2]
C[2,1] = A[2,1] * B[1,1] + A[2,2] * B[2,1] + A[2,3] * B[3,1] + A[2,4] * B[4,1] + A[2,5] * B[5,1]
C[3,1] = A[3,1] * B[1,1] + A[3,2] * B[2,1] + A[3,3] * B[3,1] + A[3,4] * B[4,1] + A[3,5] * B[5,1]
Map phase: For A[1,2], emit ((1, k), (‘A’, 1, 2, A[1,2])) for k in 1..2

emit ((1,1)(‘A’, 1, 2, A[1,2])) ((1,2)(‘A’, 1, 2, A[1,2]))

For B[3,1], emit ((i, 1), (‘B’, 3, 1, B[3,1])) for i in 1..3

emit ((1,1), (‘B’, 3, 1,B[3,1])), ((2,1)(‘B’, 3, 1,B[3,1])), ((3,1)(‘B’, 3, 1,B[3,1]))
26
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Matrix Multiplication
Map-Reduce (Two phase)

Idea: 1, Multiply the appropriate values in 1st MapReduce phase 
2, Add up in 2nd MapReduce phase 

Try this tonight!



Data set is truly “big” 
• Terabytes, not tens of gigabytes
• Hadoop/MapReduce designed for 

terabyte/petabyte scale computation
• Most real-world problems process less than 100 GB 

of input
• Microsoft, Yahoo: median job under 14 GB
• Facebook: 90% of jobs under 100 GB

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

General Characteristic of Good Problem 
for Map-Reduce



Don’t need fast response time
• When submitting jobs, Hadoop latency can be 1 min 
• Not well-suited for problems that require faster 

response time
• online purchases, transaction processing 

• A good pre-computation engine
• E.g., pre-compute related items for every item in 

inventory

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

General Characteristic of Good Problem 
for Map-Reduce



• Good for applications that work in batch mode
• Runs over entire data set
• Takes time to initiate, run; 
• Shuffle step can be time-consuming;

• Does not provide good support for random 
access to datasets
• Extensions: Hive, Dremel, Shark, Amplab

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

General Characteristic of Good Problem 
for Map-Reduce



• Best suited for data that can be expressed as key-
value pairs without losing context, dependencies
• Graph data is hard to process using Map-Reduce

• Implicit relationships: edges, sub-trees, child/parent 
relationships, weights, etc.

• Graph algorithms need information about the entire 
graph for each iteration

• Hard to break into independent chunks for Map tasks

• Alternatives: Google’s Pregel, Apache Giraph

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

General Characteristic of Good Problem 
for Map-Reduce



Other problems/data NOT suited for MapReduce
• Tasks that need results of intermediate steps to 

compute results of current step 
• Interdependencies among tasks
• Map tasks must be independent

• Some machine learning algorithms 
• Gradient-based learning

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

General Characteristic of Good Problem 
for Map-Reduce



Summary: Good candidates for Map-Reduce:
• Jobs that process huge quantities of data and 

either summarize or transform the content
• Collected data has elements that can easily be 

captured with an identifier (key) and 
corresponding value

33Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

General Characteristic of Good Problem 
for Map-Reduce


