
Introduction to Spark and GeoSpark

Yijun Lin

Department of Computer Science & Engineering

University of Minnesota, Twin Cities
lin00786@umn.edu

mailto:lin00786@umn.edu

Hadoop MapReduce VS. Apache Spark

• Hadoop MapReduce
• Typically, data are read from disk, processed, and written back to disk
• MapReduce is inefficient for multi-pass applications that read data more than once

• Apache Spark
• When the output of an operation needs to be fed into another operation, Spark passes the

data directly without writing to persistent storage

What is Spark

• Apache Spark is an open-source cluster computing framework

• Application areas
• Iterative Algorithms
• Interactive Data Mining
• Streaming Applications

Spark Stack

Data Storage Layer

Job Schedulers

Spark Libraries

Core Module * Resilient Distributed
Datasets (RDDs)

Resilient Distributed Datasets (RDDs)

• An RDD is an immutable, in-memory collection of objects.
• Each RDD can be split into multiple partitions, which in turn are computed on

different nodes of the cluster, so that users can
• Explicitly persist intermediate results in memory
• Control the partitioning to optimize data operations
• Manipulate data using a rich set of operators

• RDDs seem a lot like Scala collections
• RDD[T] and List[T]

Partitioning Strategy of RDDs

• Spark partitioning
• Dividing the data into chunks that consider the number of partitions (cluster size) and

how data is distributed across partitions.

• Number of partitions? Cannot be too large or too small

• How are data distributed across partitions?
• HashPartitioner will distribute data, e.g., (key, value) pairs, across the partitions using

partitionId = hash(Key) % n_partitions
• RangePartitioner will distribute data across partitions based on a specific range
• Customized Partitioner x: (word, 1)

RDD Operations - Transformation VS. Action

• Transformation
• Return new RDDs as results

• They are lazy, the result RDD is not immediately computed

• Action
• Compute a result based on an RDD, and returned

• They are eager, the result is immediately computed

map[T](f: A=>B): RDD[T]
Apply function to each element in the RDD
and return an RDD of the result

collect: Array[T]
Return all elements from RDD.

Example

• Consider the following example:

What has happened on the cluster at this point?

sc - a SparkContext (or SparkSession) object
The SparkContext object can be thought as your handle
to the Spark cluster. It represents the connection
between the Spark cluster and your running application.
Initializing a SparkContext or SparkSession object is the
first step of a Spark program.

Example

• Consider the following example:

What has happened on the cluster at this point?
Nothing. Execution of map (a transformation) is deferred.

Example (Cont.)

• Consider the following example:

Spark starts the execution when an action is called
Return the total number of characters in the entire RDD of strings

add an action, reduce

reduce(op: (A, A) => A): A
Combine the elements in the RDD together
using op function and return result

Benefits of Laziness

• Another example:

• The execution of flatMap is deferred until take action happens
• As soon as the first 10 elements of have been computed, word_rdd is done

• Spark analyzes and optimizes the chain of operations before executing it
• Spark saves time and space by avoiding unnecessary computation

Common Transformations

map map[T](f: A=>B): RDD[T]
Apply function to each element in the RDD and return an RDD of
the result.

flatmap flatmap[T](f: A=>B): RDD[T]
Apply function to each element in the RDD and return an RDD of
the result, but output is flattened.

filter filter[T](pred: A=>Boolean): RDD[T]
Apply predicate function, pred, to each element in the RDD and
return an RDD of elements that passed the condition.

distinct distinct():RDD[T]
Return an RDD with duplicates removed

Common Transformations

flatmap flatmap[T](f: A=>B): RDD[T]
Apply function to each element in the RDD and return an RDD of
the result, but output is flattened.

Common Transformations

distinct distinct():RDD[T]
Return an RDD with duplicates removed

Common Actions

collect collect: Array[T]
Return all elements from RDD.

count count(): Long
Return the number of elements in the RDD.

take take(num: Int): Array[T]
Return the first num elements of the RDD.

reduce reduce(op: (A, A) => A): A
Combine the elements in the RDD together using
op function and return result.

foreach foreach(f: A => Unit): Unit
Apply function to each element in the RDD, and
return Unit.

Common Actions

count count(): Long
Return the number of elements in the RDD.

How Spark Jobs are Executed

How Spark Jobs are Executed

How Spark Jobs are Executed

How Spark Jobs are Executed

Steps of executing a Spark program:
1. The driver program runs the Spark application,

which creates a SparkContext
2. The SparkContext connects to a cluster manager

to allocate resources
3. Spark acquires executors on nodes in the cluster,

which run computations for your application.
4. Driver program sends your application code to

executors to execute.

Example

• A simple example with println (Scala code)

What will you see?

foreach(f: A => Unit): Unit
Apply function to each element in the RDD and return Unit

Example

• A simple example with println (Scala code)

On the driver: Nothing.
The operation foreach is an action, with return type Unit.
Therefore, it is eagerly executed on the executors, not the driver. Thus, println are
happening on the worker nodes and return nothing to the driver node.

foreach(f: A => Unit): Unit
Apply function to each element in the RDD and return Unit

Programming with Spark

• Example: Logistic Regression
• Logistic regression is an iterative algorithm typically used for classification. Like most

classification algorithms, it updates weights iteratively based on the training data.

Programming with Spark

• Example: Logistic Regression
• Logistic regression is an iterative algorithm typically used for classification. Like most

classification algorithms, it updates weights iteratively based on the training data.

Programming with Spark

• Example: Logistic Regression
• Logistic regression is an iterative algorithm typically used for classification. Like most

classification algorithms, it updates weights iteratively based on the training data.

Spark starts the execution when the action reduce is applied

Programming with Spark

• Example: Logistic Regression
• Logistic regression is an iterative algorithm typically used for classification. Like most

classification algorithms, it updates weights iteratively based on the training data.

points is being re-loaded upon every iteration!
Unnecessary!

Caching and Persistence

• By default, RDDs are recomputed each time you run an action on them. This can
be expensive (time-consuming) if you need to use a dataset more than once.

• Spark allows you to control what is cached in memory
• persist() or cache()

points is loaded once and is cached in memory.
It can be re-used on each iteration.

Word Count Example Using Spark RDD

Spark SQL

• Spark SQL is a component of Spark Stack
• A Spark module for structured data processing
• Implemented as a library on top of Spark

• Advantages
• Support relational processing in spark
• High performance
• Easily support new data sources such as semi-structured data

Spark SQL - DataFrame

• DataFrame is the core abstraction of Spark SQL
• Conceptually, RDDs are full of records with some known schema
• DataFrame is like a table in relational database

• Once you have a DataFrame to operate on, you can freely write familiar SQL syntax to
operate on your dataset!

order_id account date

1 aaa 2017/01/01

2 bbb 2017/01/02

3 ccc 2017/01/02

4 ddd 2017/01/03

5 eee 2017/01/03

Managing Spatial Data in Spark

• Classic - single machine DBMS or GIS tools
• ArcGIS/QGIS
• PostgreSQL + PostGIS

• Managing spatial data is not easy in Spark
• No spatial data type support
• No spatial index
• No spatial query

Managing Spatial Data in Spark

• Classic - single machine DBMS or GIS tools
• ArcGIS/QGIS
• PostgreSQL + PostGIS

• Managing spatial data is not easy in Spark
• No spatial data type support
• No spatial index
• No spatial query

+

Apache Sedona (GeoSpark)

• GeoSpark is a cluster computing system for
processing large-scale spatial data

• GeoSpark extends RDDs to Spatial Resilient
Distributed Datasets (SRDDs) that efficiently
load, process, and analyze large-scale spatial
data across machines

• Spark SQL => Spatial SQL

Examples: https://jiayuasu.github.io/files/talk/jia-sigspatial19-teaser.pdf

https://jiayuasu.github.io/files/talk/jia-sigspatial19-teaser.pdf

Spatial RDD (SRDD) Layer

• SRDD supports heterogeneous data sources
• E.g., CSV, WKT, GeoJSON, NetCDF/HDF, and Shapefile

• SRDD partitioning
• GeoSpark automatically repartitions a loaded Spatial RDD according to its internal spatial

data distribution
• The intuition is to group spatial objects into the same partition based on the spatial

proximity, so that reducing the data shuffles across cluster

Yu et al. Spatial data management in apache spark: the GeoSpark perspective and beyond, 2018

SRDD Partitioning

Yu et al. Spatial data management in apache spark: the GeoSpark perspective and beyond, 2018

Building Local Indexes

• Building a spatial index for the entire dataset is not possible because a tree-like
spatial index yields additional 15% storage overhead

• If the user wants to use a spatial index, GeoSpark will build a set of local spatial
indexes rather than a single global index
• Create a spatial index (R-Tree or Quad-Tree) per RDD partition
• Local indexes can be persisted in memory or disk

Spatial SQL Example

Other examples: https://sedona.apache.org/tutorial/sql-python/

https://sedona.apache.org/tutorial/sql-python/

Assignment 1

