Introduction to Spark and GeoSpark

Yijun Lin
Department of Computer Science & Engineering
University of Minnesota, Twin Cities
lin00786@umn.edu

mailto:lin00786@umn.edu

Hadoop MapReduce VS. Apache Spark

* Hadoop MapReduce

* Typically, data are read from disk, processed, and written back to disk
* MapReduce is inefficient for multi-pass applications that read data more than once

Iteration in Hadoop:

B> o D> b oD D o D>
st B st e ot ot
qle sy 1e &Y 1e &Y 1e &Y e Y e Y
d Kte ' ead Fie hread hw(\“”
MapReduce progra MapRed 2 ViapRed am
In put Read/write Read/write Read/write
(e.g., from HDFS) intermediate data intermediate data intermediate data

* Apache Spark

 When the output of an operation needs to be fed into another operation, Spark passes the
data directly without writing to persistent storage

Iteration in Spark:

TS
s s
re?
L d
Input § In-memory computations, no need to read/write to disk. 1

(e.g., from HDFS)

What is Spark

* Apache Spark is an open-source cluster computing framework

* Application areas
* lterative Algorithms Spark Stack

* |nteractive Data Mining

. .. . _ Spark SQL & : Spark
* Streaming Applications Spark Libraries Dﬂ?;;,a%es MLlib GraphX Stre[;?rr]ing

Job Schedulers

Mesos | Standalone

- (Cassandra HBase l S3

Data Storage Layer

Resilient Distributed Datasets (RDDs)

 An RDD is an immutable, in-memory collection of objects.

* Each RDD can be split into multiple partitions, which in turn are computed on

different nodes of the cluster, so that users can
* Explicitly persist intermediate results in memory
e Control the partitioning to optimize data operations

* Manipulate data using a rich set of operators

e RDDs seem a lot like Scala collections
 RDDJ[T] and List[T]

myRDD : RDD

—

Array / >

Partition

Partition

Partition

Partition

E Memory 3
F Partition 3

F Partition 3

3 Memary E
FPartition 3

F Memary 3
F Partition

Partitioning Strategy of RDDs

e Spark partitioning

* Dividing the data into chunks that consider the number of partitions (cluster size) and
how data is distributed across partitions.

* Number of partitions? Cannot be too large or too small

* How are data distributed across partitions?
* HashPartitioner will distribute data, e.g., (key, value) pairs, across the partitions using
partitionld = hash(Key) % n_partitions
* RangePartitioner will distribute data across partitions based on a specific range
* Customized Partitioner O F

word_rdd word_rdd (n_partitions, partition_func)

RDD Operations - Transtormation VS. Action

* Transformation

e Return new RDDs as results

* They are lazy, the result RDD is not immediately computed

length_rdd = word_rdd.map(

* Action
* Compute a result based on an RDD, and returned

* They are eager, the result is immediately computed

a _coll = a_rdd.collect()

print(a_coll)

map[T](f: A=>B): RDD[T]
Apply function to each element in the RDD
and return an RDD of the result

collect: Array[T]
Return all elements from RDD.

Example

* Consider the following example:

L sc - a SparkContext (or SparkSession) object

a_list = [The SparkContext object can be thought as your handle

a_rdd = sc.parallelize(a_list) totheSparkchhnenItrepmsentstheconhecnon. |
between the Spark cluster and your running application.

a_len_rdd = a_rdd.map(. Initializing a SparkContext or SparkSession object is the

first step of a Spark program.

ss = SparkSession. \
builder. \

What has happened on the cluster at this point? appName ("'hwl"). \
getOrCreate()

Example

* Consider the following example:

a list = [

a_rdd = sc.parallelize(a_list)

a_len_rdd = a_rdd.map(

What has happened on the cluster at this point?
Nothing. Execution of map (a transformation) is deferred.

Example (Cont.)

* Consider the following example:

a_list = |

a_rdd = sc.parallelize(a_list)

a_len_rdd = a_rdd.map(: reduce(op: (A, A) => A): A
Combine the elements in the RDD together
total_len = a_len_rdd. reduce(using op function and return result

add an action, reduce

Spark starts the execution when an action is called
Return the total number of characters in the entire RDD of strings

Benefits of Laziness

* Another example:

input_file =
text_rdd = sc.textFile(input_file)

word_rdd = text_rdd.flatMap(x: X.split(® ')).take(10)

* The execution of flatMap is deferred until take action happens

* As soon as the first 10 elements of have been computed, word_rdd is done

» Spark analyzes and optimizes the chain of operations before executing it

* Spark saves time and space by avoiding unnecessary computation

Common Transformations

map

flatmap

filter

distinct

map|[T](f: A=>B): RDDI[T]
Apply function to each element in the RDD and return an RDD of
the result.

flatmap[T](f: A=>B): RDD[T]
Apply function to each element in the RDD and return an RDD of
the result, but output is flattened.

filter[T](pred: A=>Boolean): RDD[T]
Apply predicate function, pred, to each element in the RDD and
return an RDD of elements that passed the condition.

distinct():RDDI[T]
Return an RDD with duplicates removed

Common Transformations

flatmap flatmap[T](f: A=>B): RDD|[T]
Apply function to each element in the RDD and return an RDD of
the result, but output is flattened.

val text: List[String] = List("you and me", "jump and run", "I love you", "jump forward", "")
val textRDD = sc.parallelize(text)

val splitText = textRDD.flatMap(phase => phase.split(" ")) // Flatten the output

val splitTextColl = splitText.collect()
splitTextColl.foreach(println) // "you", "me", "jump", "and", "run", "I", "love", "you", "jump", "forward"

Common Transformations

distinct distinct():RDD[T]
Return an RDD with duplicates removed

val text: List[String] = List("you and me", "jump and run", "I love you", "jump forward", "")
val textRDD = sc.parallelize(text)

val splitText = textRDD.flatMap(phase => phase.split(" ")) // Flatten the output
val textDist = splitText.distinct() // Get the distinct words

val textDistColl = textDist.collect()
textDistColl. foreach(printin) // "me", "I, "love", "run", "forward", "jump", "you", "and"

Common Actions

collect

count

take

reduce

foreach

collect: Array[T]
Return all elements from RDD.

count(): Long
Return the number of elements in the RDD.

take(num: Int): Array|[T]
Return the first num elements of the RDD.

reduce(op: (A, A) =>A): A
Combine the elements in the RDD together using
op function and return result.

foreach(f: A => Unit): Unit
Apply function to each element in the RDD, and
return Unit.

Common Actions

count count(): Long
Return the number of elements in the RDD.

val text: List[String] = List("you and me", "jump and run", "I love you", "jump forward", "")
val textRDD = sc.parallelize(text)

val splitText = textRDD.flatMap(phase => phase.split(" ")) // Flatten the output
val textDist = splitText.distinct() // Get the distinct words
val counts = textDist.count() // return 8

How Spark Jobs are Executed

o (- - -

How Spark Jobs are Executed

/-)
This is the node you’re interacting with
when you're writing Spark programs!

These are the nodes actually
executing the jobs!

SRR GER ER

How Spark Jobs are Executed

. ~—
via a cluster manager.
Allocates resources across

cluster, manages scheduling.
e.g., YARN/Mesos

How Spark Jobs are Executed

Steps of executing a Spark program:

1. The driver program runs the Spark application,
which creates a SparkContext

2. The SparkContext connects to a cluster manager
to allocate resources

3. Spark acquires executors on nodes in the cluster,
which run computations for your application.

4. Driver program sends your application code to
executors to execute.

. ~— >
via a cluster manager.
Allocates resources across

cluster, manages scheduling.
e.g., YARN/Mesos

Example

* A simple example with printin (Scala code)

(name: age:)

: [] foreach(f: A => Unit): Unit
people. foreach(printin) Apply function to each element in the RDD and return Unit

What will you see?

Example

* A simple example with printin (Scala code)

(name: age:)

[] foreach(f: A => Unit): Unit
people. foreach(printin) Apply function to each element in the RDD and return Unit

On the driver: Nothing.
The operation foreach is an action, with return type Unit.

Therefore, it is eagerly executed on the executors, not the driver. Thus, printin are
happening on the worker nodes and return nothing to the driver node.

Programming with Spark

* Example: Logistic Regression

» Logistic regression is an iterative algorithm typically used for classification. Like most
classification algorithms, it updates weights iteratively based on the training data.

T we w—a- Y g(wxi, i)
T =1

Programming with Spark

* Example: Logistic Regression

» Logistic regression is an iterative algorithm typically used for classification. Like most
classification algorithms, it updates weights iteratively based on the training data.

sc.textFile() .map{parsePoint)
zero(d)
(1 to numIterations) {
points.map {p
g(p)
}.reduce(_+)
w == alpha * gradient

}

wi—w—a-) g(wxy)
=1

Programming with Spark

* Example: Logistic Regression

» Logistic regression is an iterative algorithm typically used for classification. Like most
classification algorithms, it updates weights iteratively based on the training data.

sc.textFile() Jmapl(parsePoint)
zero(d)

(1 to numIterati {
points .map {p

g(p)

}.reduce(_+_)

w == alpha * gradient

}

Spark starts the execution when the action reduce is applied n
Wi w—a- Y gwx,y)
=1

Programming with Spark

* Example: Logistic Regression

}

» Logistic regression is an iterative algorithm typically used for classification. Like most
classification algorithms, it updates weights iteratively based on the training data.

sc.textFile()

map

zero(d)

(1 to numIterati {
points .map {p

g(p)

}.reduce(_+_)

w == alpha * gradient

points is being re-loaded upon every iteration!

(parsePoint)

Unnecessary!

ww—a-y gwxi,y)
=

Caching and Persistence

* By default, RDDs are recomputed each time you run an action on them. This can
be expensive (time-consuming) if you need to use a dataset more than once.

* Spark allows you to control what is cached in memory

» persist() or cache()

sc.textFile() .map{parsePoint)} persist()

zero(d)
(1 to numIterations) {
points.map {p

a(p)
}.reduce(_+_)
w == alpha x gradient
}
points is loaded once and is cached in memory.

It can be re-used on each iteration.

Word Count Example Using Spark RDD

pyspark

__name__

sc_conf pyspark ()
()
()
()
()

SC pyspark (sc_conf)
SC ()

input_path
data SC (input_path)
firstle = data (: line ()) (10)

count data (: line ())
(: (word)) (: a b) ()

Spark SQL

* Spark SQL is a component of Spark Stack

* A Spark module for structured data processing SpQrK SQL
* Implemented as a library on top of Spark

* Advantages
* Support relational processing in spark
* High performance

* Easily support new data sources such as semi-structured data

Spark SQL - DataFrame
Corierid | _sccount | _cate

1 aaa 2017/01/01
* DataFrame is the core abstraction of Spark SQL 2 bbb 2017/01/02
* Conceptually, RDDs are full of records with some known schema . e 2017/01/02
o : . 4 ddd 2017/01/03
* DataFrame is like a table in relational database
5 eee 2017/01/03

* Once you have a DataFrame to operate on, you can freely write familiar SQL syntax to
operate on your dataset!

testDF.createOrRepllaceTempView()

spark.sql(|)

Managing Spatial Data in Spark

* Classic - single machine DBMS or GIS tools
* ArcGIS/QGIS
* PostgreSQL + PostGIS

* Managing spatial data is not easy in Spark
* No spatial data type support
* No spatial index
* No spatial query

Managing Spatial Data in Spark

* Classic - single machine DBMS or GIS tools
* ArcGIS/QGIS
* PostgreSQL + PostGIS

* Managing spatial data is not easy in Spark i APAc~s<”(\Z

Spark’

* No spatial data type support
* No spatial index

* No spatial query Ge@Spark

Apache Sedona (GeoSpark)

1
1

* GeoSpark is a cluster computing system for
processing large-scale spatial data

1
X

Spatial SOL APl pe=e=eeee- @
H i
¥

Query Optimizer Scala/Java RDD AP

Y Y
~ R

Spatial Query Processing Layer

* GeoSpark extends RDDs to Spatial Resilient
Distributed Datasets (SRDDs) that efficiently
load, process, and analyze large-scale spatial
data across machines

Range || Distance | [JKNN IRange Join"Distance Joinl

. a ? J

'S @ ' | #7 LZ ™\
Spatial RDD Layer

Global Spatial RDD Partitioner

S— Spatial Index | I

¢ Spa rk SQL => Spat|a| SQL Spatial RDD Point, Polygon, Line string

Geometrical Operations Library

|
4

Examples: https://jiayuasu.github.io/files/talk/jia-sigspatial19-teaser.pdf

4

https://jiayuasu.github.io/files/talk/jia-sigspatial19-teaser.pdf

Spatial RDD (SRDD) Layer

* SRDD supports heterogeneous data sources
* E.g., CSV, WKT, GeoJSON, NetCDF/HDF, and Shapefile

* SRDD partitioning

* GeoSpark automatically repartitions a loaded Spatial RDD according to its internal spatial
data distribution

* The intuition is to group spatial objects into the same partition based on the spatial
proximity, so that reducing the data shuffles across cluster

Yu et al. Spatial data management in apache spark: the GeoSpark perspective and beyond, 2018

SRDD Partitioning

Algorithm 1 SRDD spatial partitioning

Data: An original SRDD
Result: A repartitioned SRDD | ;
/* Step 1: Build a global grid file at master node I _ A i
1 Take samples from the original SRDD A partitions in parallel; |
2 Construct the selected spatial structure on the collected sample at master node;
3 Retrieve the grids from built spatial structures; ' »
/* Step 2: Assign grid ID to each object in parallel

i _' e R
!

O | B oA 2|

4 foreach spatial object in SRDD A do | '
5 foreach g”d do a)' -SR.DD I)itl‘t?iti?ll()d by uniform grids
6 if the grid intersects the object then | i 1o ,
7 | Add (grid ID, object) pair into SRDD B; 1 —{ ,_“"
// Only needed for R-Tree partitioning : L"*—%“_ j—"

8 if no grid intersects the object then RS || I
9 | Add (overflow grid ID, object) pair into SRDD B; ! e

/* Step 3: Repartition SRDD across the cluster | :
10 Partition SRDD B by ID and get SRDD C; C) SRDD partitioned by R-Tree

11 Cache the new SRDD C in memory and return it;

Yu et al. Spatial data management in apache spark: the GeoSpark perspective and beyond, 2018

d) SRDD partitioned by KDB-Tree

Building Local Indexes

* Building a spatial index for the entire dataset is not possible because a tree-like
spatial index yields additional 15% storage overhead

* |f the user wants to use a spatial index, GeoSpark will build a set of local spatial
indexes rather than a single global index
* Create a spatial index (R-Tree or Quad-Tree) per RDD partition
* Local indexes can be persisted in memory or disk

Spatial SQL Example

schema_point ctType() \
add (, IntegerType(), False) °
add (, Di eType(), False) \
id (, D eType(), False)
L)

df_all_point spark. read ion(, True) (schema_point).csv(all_point_file_path)
df_all_point Ori .aceT /iew()
df_all_pointl spark.sqgl(. ;)
df_all_pointl ateOrf eT View()

df_join spark (

{prec_distance}

)
df_join.createOrRi eTempView()

Other examples: https://sedona.apache.org/tutorial/sql-python/

https://sedona.apache.org/tutorial/sql-python/

Assignment 1

2. Programming Requirements and Environment Settings
a. You must use SQL and Python to implement all tasks.
b. Programming Environment:
o JAVA version 1.8, Python 3.7, Pyspark 3.0.0, Sedona 1.1.1
o [Optional] You can use Conda to manage your programming environment.
Sconda create --name [ENV] -y python=3.7
Sconda activate [ENV]
Sconda install -c conda-forge gdal==3.4.0
Sconda install -c conda-forge pyspark==3.0.0

Spip install apache-sedona

to work properly.! Specifically, you need to put two jar packages? under [YOUR PYTHON PATH]/site-
packages/pyspark/jar/.

