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Mining Public Datasets for Modeling
Intra-City PM, . Concentrations
at a Fine Spatial Resolution



Air Pollution is a Global Problem
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Data source:
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Air Pollutant: PM, . and PM,

PM, ;: fineinhalable
particles, with diameters that
are generally 2.5 micrometers
and smaller

United States Environmental
Protection Agency

PM2.5&PM10

Human Hair
50-70 microns in diameter

€ PM25
Combustion particles,

organic compounds,
metals, etc.
<2.5 microns in diameter

& PM10
Dust, pollen, mould, etc.

<10 microns in diameter

Fine Beach Sand
90 microns in diameter

Source : US EPA



Air Quality Index

AQI: air quality index computed from a piecewise linear function of the pollutant
concentration (e.g., 12.0 micrograms per cubic meter is 50 AQI for PM2.5).

Air Quality Index
Levels of Health
Concern

Numerical

Valoe Meaning

Air quality is acceptable; however, for some pollutants there may be a
Moderate 51 to 100 moderate health concern for a very small number of people who are
unusually sensitive to air pollution.

Unhealthy for Members of sensitive groups may experience health effects. The
Sensitive Groups general public is not likely to be affected.

Everyone may begin to experience health effects; members of
sensitive groups may experience more serious health effects.

m 201 to 300 Health alert: everyone may experience more serious health effects.

Health warnings of emergency conditions. The entire population is
301 fo 500 more likely to be affected.




Limited Air Quality Observations

* Monitoring stations are usually .
sparse — 12 stations for PM, : in ; A
Los Angeles

®

Central LA Monitoring Stations
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Nearby locations would have similar air quality

* Tobler's 1st law of geography:

“all things are related, but nearby things are
more related than distant things”
Tobler — 1970

e Spatial interpolation? IDW?

Vandecasteele & Devillers, Improving volunteered geographic data quality using semantic similarity measurements

1 NO, BUT
WE'RE NEAR

TO EACH

OTHER




Typical Air Quality Prediction Result (AirNow)

Current Air Quality
Celifarnie " | - _ Primary Pollutant

gD This pollutant currently has the highest AQI in the area.
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Lan Vegas
O _/

v PM2.5 59  Moderate

o
- If you are unusually sensitive to particle pollution, consider reducing your activity level
An geles ; or shorten the amount of time you are active outdoors.

™

San Diego - > PM10 55 Moderate

Mexicali
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National Maps
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https://www.airnow.gov/?reportingArea=Central%20LA%20CO&stateCode=CA



Inverse Distance Weighting

* Why are the results so
smooth over space?

* Recall IDW:
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Machine Learning Methods

* Some prediction
variations in space,

e.g., the road network —
iS ObVious iﬁﬂi Trousdale Pkwy, Los Angeles, CA 900 pM10 @

Moderate air quality

Los Angeles, United States “Powered by proprietary algorithms,
Air Quality strict QA & machine learning.”

69 PMj 5 | 21.95 ug/m3
- - SR O
s Fair air quality ' 4 @ ﬁ j \Qg ﬁ
| . Sports Activities

Since we inhale more air during sports, you should keep
track of changes in air quality for the next few hours

Forecast History
H

BreezoMeter

Because Breathing Matters a= D i

1V



Existing Work for Air Quality Modeling

The built environment has a strong impact on air quality but how?
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Source: Liu et al., 2016

Land-use Regression Models (LUR)

Authors Study area Monitor Dependent Independent variables Buffer size (Adjusted) R?
counts variables
Briggs et al.  Huddersfield (UK) 20,28 and NO, Road traffic, urban land, and 300 m 0.58 to 0.76
(2000) Sheffield (UK) 35 topography (altitudes)
Northampton (UK)
Ross et al. New York City (US) 28-49 PM;5 Traffic, land use, census 50, 100, 300, 500 | 0.607 to
(2007) and 1000 m 0.642
Suet al. Greater Vancouver 116 NO/NO, Road, traffic, meteorology (wind 3000 m 0.53 to 0.60
(2008) Regional District, speed, wind direction and cloud
(Canada) cover/insolation)
Mavko et al.  Portland, (US) 77 NO, Traffic-related; Land use-related; 50, 100, 250, 0.66 to 0.81
(2008) Elevation; height from MSL; 300, 350, 400,
distance to a river; wind; direction 500, 750 m.
Riveraet al.  Girona province, 25 Ultrafine Heavy, light and motorcy. veh in 25,50, 100, 150, 0.36to00.72
(2012) (Spain) particles 24 h; 24 h total traffic load; length 300, 500 and
(UFP) of major roads; building density; 1000 m
distance to bus lines, highway and
intersections; land cover
Eeftens et al. 20 European regions 20 perarea PM,s5, Traffic intensity, population, and 25,50, 100,300, 0.35to0.94
(2012) PMjpand land-use 500, and 1000 m
PMcoarse
Dons et al. Flanders, (Belgium) 63 Traffic Hourly traffic streams, daily traffic 50, 100, 1000 m  0.44 to 0.77
(2013) related air  volumes, total road length;
pollutant population density and address
o black density; land use variables
NG b
A carbon
Lee et al. Taipei, (C.h.i.ns 40 NOy and Land use, no. of population and 25, 25-50, and 0.63 to 0.81
(2014) NO, households, road length, altitude, 50-500 m
distance to roads, ports
Wu et al. Beijing, (China) 35 PM;5 Traffic intensity, population, bus ~ 100-3000 m 0.43 to 0.65
(2015) stops, restaurants, and land-use

Expert-selected &
Area-specific

e.g., PM, - concentrations
is high near 500 meters of
highways in Los Angeles

12



LUR Limitations

* Experts are expensive

* Do not scale well for predictions at
various spatial and temporal
resolutions

 Sometimes rely heavily on datasets that
are not easy to obtain

e e.g., traffic
Can we do better?

Source: Liu et al., 2016
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JonSnow: Data-Driven Air Quality Prediction at
Fine-Spatial Scale

* Problem

* Given some sensors and their
locations, predicting air quality
for locations that do not have a °
sensor

PM_s AQl

Jan25 Jan 30 Feb4 Feb9 Feb 14 Feb19

 Hypothesis

e Similar environments should
have a similar air quality




Data Collection

PRISMS-DSCIC — A scalable data integration and analysis architecture

J\Z -
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Data Sources — |

AQS (Air Quality System) Data

* Hourly PM, s AQl from 12 monitoring stations in the Los Angeles Area from 2016-10-30
00:00:00 to 2017-08-31 23:00:00

QSan Gabriel Mts y
A
Monitoring Station Timestamp | PM, s AQl =
. 2017-03-04
San Gabriel Mts 12:00-00 44
. 2017-03-04
San Gabriel Mts 13:00-00 54 °
2017'03'04 > Monitoring Stations |
Central LA 12:00:00 60 Central LA * camitaco |
E iig«c'e“?figi V2
2017-03-04 o Son Gobricl Mts
Central LA 13:00:00 68 Soa iy
e
Sample data — 3“;23314““\1
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Data Sources — ||

Geographic Features - OpenStreetMap (OSM)

* Land uses (67,972 polygons), Roads (544,142 lines), Water areas (11,207 polygons), Buildings
(2,971,349 points), Aeroways (962 lines), etc.

* Each geographic category contains various feature subtypes

* e.g., subtypes for “Buildings”: commercial, apartment, house, industrial, school, etc.

17



Recall: JonSnow: Data-Driven Air Quality

Prediction at Fine-Spatial Scale

e Problem

* Given some sensors and their
locations, predicting air quality
for locations that do not have a
sensor

 Hypothesis

e Similar environments should
have a similar air quality

PM,s AQl

JJJJJ

AAAAA

Feb 14

Feb19




Approach Overview

Reporting A..

* Similar environments should have a similar air quality v ~
* How to quantify “similar air quality”

ESanGabriel 5
V-2 < 200

* Clustering of air quality measurements

* K-Means, hierarchical clustering, dimension reduction < OZNMM >

* How to quantify “similar environments”

* Train an interpretable machine learning model using
geographical context to predict whether two locations
would have “similar air quality”

300

San Gabriel g
Mts < 200

* Random Forest

Pedestrian Motorway * Apartment Factory
100m 100m 200m 200m

Monitoring Station 0 [ 0.1 5.28 2 0.3

Pedestrian Motorway Apartment Factory
100m 100m . 200m 200m

Monitoring Station 1 [ 00 327 0.041 0.432 19

Apartment

Factory



Required Technologies

 Clustering
* K-Means, Hierarchical Clustering

* Dimension Reduction
» SVD (Singular Value Decomposition)

* Interpretable Machine Learning Method
 Random Forest



Step 1. Grouping Stations based on their
PM, - AQls

* To identify the monitoring stations that have similar temporal pattern on PM, ¢
AQls

* These monitoring stations should have a similar environment.




Reporting A..
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K-means Clustering

* Input: time-series observations at

each station

e Output: clusters of stations having a
similar temporal pattern

s N

0 10 km

&
&

C8

Monitoring Stations

@ Central LA CO

A E San Fernando Vly
E San Gabriel V-2

* NW Coastal LA
San Gabriel Mts
Santa Clarita Vly
South Coastal LA

@ Southeast LA CO

K SW Coastal LA

@ SW San Bernardino

A W San Fernando Vly

& W San Gabriel Vly

L0




K-means Clustering

e Recall: Hypothesis

* Similar environments should
have a similar air quality

e Stations in the same cluster have a
similar temporal pattern
* How to quantify “similar environment
« what specific geographic feature
types (e.g., primary roads, industrial
areas, parks)
* from what distance have the most
impact on the clustering result?

7

e Output: clusters of stations having a
similar temporal pattern
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Step 2. Generating Geographic Abstraction

Length of line features

* e.g., Roads, Aeroways

Example Roads

100m | 200m
Pedestrian 23 43
Motorway 30 200
[23, 30, 43, 200]

200m buffer

Monitoring Station A

Road C

Pedestrian
Motorway



Step 2. Generating Geographic Abstraction

Count of point features
* e.g., Buildings

Example Buildings Monitoring Station A
100m | 200m
Apartment 2 8
Factory 0 3
'
[2,0,8, 3] Apartment

Factory



Step 2. Generating Geographic Abstraction

Area of polygon features

* e.g., Land uses, Water areas

Example Land uses

100m | 200m
Park 500 950
Industrial 0 740
'

[500, 0, 950, 740]

AreaD  340m?2

200m?
([ J

Monitoring Station A

300m2

Park

Industrial



Step 2. Generating Geographic Abstraction

* Generating a large vector for each monitoring station

Pedestrian Motorway Pedestrian Motorway Park Industrial
100m 100m 200m 200m 100m 100m
Monitoring Station X [ 23 30 43 200 500 0
Park Industrial Apartment  Factory Apartment Factory Distance
200m 200m 100m 100m 200m 200m to Ocean
950 740 2 0 8 3 4000 |

* In practice, we creates buffers from 100 meters to 3,000 meters with an interval
of 100 meters

* 3,500+ components in a vector



How to quantify “similar environment”

A 4

Clustering result

Geographic abstraction

Pedestrian Motorway Apartment Factory
100m 100m  200m 200m

Monitoring Station 1 [ 23 30 2 3 ]

Pedestrian Motorway Apartment Factory

100m 100m  200m 200m
Monitoring Station 2 [ 10 25 1 3 ] @
Pedestrian Motorway Apartment Factory @
100m 100m 200m 200m
Monitoring Station 3 [ 56 100 8 0 ] @

Pedestrian Motorway Apartment Factory
100m 100m 200m 200m 0 10km

Monitoring Station 12 [ 67 10 8 0 ] ———



Step 3. Computing Feature Importance

* Training a random forest model to
» predict cluster label using the geographic context
» each feature component represents a geographic feature type within
certain distance
e quantify the impact of each feature component

Temporal pattern cluster

Pedestriani Motorway Apartment Factory

i i
! :
I 100m | 100m 200m 200m
i !
Monitoring Station 1 [: 23 i 30 2 3 ] Cluster 1
]
]
iPedestrian | Motorway  Apartment Factory
} 100m | 100m = 200m 200m
Monitoring Station 2 [i 10 i 25 1 3 ] E— Cluster 1 =
1 1
lPedestriani Motorway Apartment Factory
]
! 100m | 100m = 200m 200m
]
Monitoring Station 3 [i 56 ' 5 7 0 ] _— Cluster 2
1 1
iPedestrian i Motorway Apartment Factory Q
i 100m i 100m  200m 200m
]
Monitoring Station 4 [: 67 1 10 8 0 ] _ Cluster 2
! :
1



Step 3. Generating Geo-context

* Multiplying each geographic abstraction value by its feature importance to
generate geo-context

Geographic Abstraction Vector A = [ay,aq, ..., ay]

Importance Vector I = [i1,ig,...,104,]

Geo-Context Vector C = A x 1 Example of Importance

) Pedestrian 100m 0.000
Pedestrian Motorway - Apartment Factory

[ 100m 100m 200m 200m Motorway 100m 0.109
Monltorling Statlon.1 53 30 ) 3 ]
(Geographic Abstraction) Apartment 200m 0.041
l Pedestrian Motorway Apartment Factory Factory 200m 0.144
100m 100m .. 200m 200m
Monitoring Station 1 [ 3.27 0.041 0.432

(Geo-context) Total 1.0



Step 3. Geo-context

* Geo-context is an updated vector
from geo-abstract for describing

* how each feature type within Pedestrian Motorway - Apartment
. . 100 100 200
a certain distance (a feature Monitoring Station 1 [ 23m 30m zm
component) in Geographic (Geographic Abstraction)
H Pedestrian Motorway Apartment
Abstraction affects the o l | oom - oom P oom
Temporal Pattern (PM, s AQl) Monitoring Station1 [ ' . 0041

(Geo-context)

e Reward important (relevant)
features and penalize others

Factory
200m

3

Factory
200m

0.432

]



Step 4. Predicting PM, - AQl

Train a regression model to predict PM, s AQl for a target location at time T

[Geo-context, AQI] for each monitoring station at time T

By 0 Regression AQl prediction of
* . Model target location

[Geo-context] for target location



Experiments

Leave-one-out cross-validation method

* Predict PM, s AQl for the removed station by using other 11 stations
e Compare our approach with baseline methods

Predicting at a fine scale

* Predict PM, s AQl of each point on an 1-mile-apart fishnet covering most of the Los Angeles
area (604 points)

 Visualize the fine-scale prediction results



Experiment & Result — |

Leave-one-out cross-validation method
* Tested with three methods on three temporal scales

* Geo-context, Geo-abstraction, IDW (Inverse distance weighting)
* Monthly (7 months), daily (233 days), and hourly (168 hours)

* RMSE - root-mean-square error; MAE - mean absolute error

Geo — context | Geo — Abstraction | IDW ——\

All within 10% error margin; Significant different with 95% confai(aence (paired t-test)

RMSE (Monthly) 2.53984 2.62391 2.88263
MAE (Monthly) 1.86657 1.93673 2.18675 IDW method
RMSE (Daily) 4.33786 4.35857 4.10172
MAE (Daily) 3.26140 3.28176 3.10185 T
RMSE (Hourly) 7.38823 7.59260 6.66106 Z0- Twz « P F 25 ¥ &
MAE (Hourly) 5.06559 5.12406 4.54779 B JpLELL

= 3238



Area
Central LA

Cco

E San
Fernando Vly

E San Gabriel
V-2

NW Coastal
LA

Value

Value

Value

Experiment & Result — | (Cont’d)

M Geo-Context Error

50

B Geo-Abstraction Error

Time

M IDW Error

-50

50

-50

50

-50

50

San Gabriel
Mts

Santa Clarita
Vly

South
Coastal LA

Southeast LA
co

SW Coastal
LA

Value

Value

Value

Value

Value

50

-50

50

-50

50

-50

50

-50

50

-50

e
e e i e




Experiment & Result —

Predicting PM, s AQls at a fine scale

Geo-context

IDW

Geo Name Buf fer Size (meter) Geo type Importance (%)
land use 1100 wetland 0.0051177
land use 1300 university 0.004450

road 600 rail 0.0044327
land use 1200 village_green 0.0037241
road 700 primary 0.0035520
land use 1900 farmland 0.0031458
land use 2700 village_green 0.0030063
road 800 residential 0.0028980
building 2000 retail 0.0027980
building 900 industrial 0.0027576
road 500 tertiary 0.0027357
land use 900 pitch 0.0026613
building 2900 school 0.0025681
building 1700 garages 0.0025361
road 1300 motorway 0.0023724

PM25AQI

Dec 2016

Jan 2017

Jan 2017



Predicting PM, s AQls at a fine scale

Experiment & Result —

Geo-context

IDW

Geo Name Buf fer Size (meter) Geo type Importance (%)
land use 1100 wetland 0.0051177
land use 1300 university 0.004450

{  road 600 rail 0.0044327
land use 1200 village_green 0.0037241

i road 700 primary 0.0035520
land use 1900 farmland 0.0031458
land use 2700 village_green 0.0030063

road 800 residential 0.0028980
building 2000 retail 0.0027980
building 900 industrial 0.0027576

road 500 tertiary 0.0027357
land use 900 pitch 0.0026613
building 2900 school 0.0025681
building 1700 garages 0.0025361

road 1300 motorway 0.0023724

R

Dec 2016

PM2.5 AQH

Jan 2017

Jan 2017




Predicting PM, s AQls at a fine scale

Experiment & Result —

Geo-context

IDW

Geo Name Buf fer Size (meter) Geo type Importance (%)
land use 1100 wetland 0.0051177
land use 1300 university 0.004450

road 600 rail 0.0044327
i land use 1200 village_green 0.0037241 :
road 700 primary 0.0035520
land use 1900 farmland 0.0031458
land use 2700 village_green 0.0030063
road 800 residential 0.0028980
building 2000 retail 0.0027980
building 900 industrial 0.0027576
road 500 tertiary 0.0027357
land use 900 pitch 0.0026613
building 2900 school 0.0025681
building 1700 garages 0.0025361
road 1300 motorway 0.0023724

R

Dec 2016

PM2.5 AQH

Jan 2017

Jan 2017




Related Work

Limitations

Advantages of
our method

Spatial interpolation
methods, e.g., IDW and
Kriging

Not considering neighborhood
characteristic

With neighboring geographic
features

Cannot generate a fine scale result with
sparse monitoring stations

Can generate accurate result in a
fine scale

Dispersion models

Require detailed data (e.g., building
heights and distance between neighboring
buildings)

Use easily accessible datasets
(OpenStreetMap)

Land-use regression
(LUR) methods
(e.g., Hoek (2008))

Rely on expert-selected predictors,
including types and spatial radii

Expert-free feature selection




Summary

* A spatial data mining approach to build an
accurate model to predict PM,
concentrations at a fine scale by

* Automated selection of important
geographic features without using expert
knowledge.

PM2.5 AQI




Additionally, Air Quality Forecasting

Goal

Build a general approach for location-dependent time-series data forecasting

Challenges:

Existing approaches do not handle spatial correlation well
e.g., Auto-Regression Integrated Moving Average (ARIMA), Kalman filtering,
Artificial Neural Network (ANN)

Our approach

* We are building a Diffusion Convolutional Recurrent Neural Network for forecasting location-
dependent time series data.

* Continuously forecasting air quality index (AQl) in next 24 hours at a fine scale using data on
the PRISMS-DSCIC

Lin, Y., Mago, N., Gao, Y., Li, Y., Chiang, Y.-Y., Shahabi, C., and Ambite, J. L. (November 2018). Exploiting Spatiotemporal Patterns for Accurate Air Quality Forecasting using Deep Learning. In
Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 359 — 368, Seattle, WA, USA



DCRNN - Diffusion Convolutional Recurrent Neural
Network

Graph Construction

Each point in the graph represents the time series at the station
The link between points would be the proximity between stations
(e.g., distance, geographic similarity)

Spatial Dependency Modeling

- Use diffusion convolution to learn a
function that maps historical graph signal
to future graph signal

Diffusion Convolutional  Diffusion Convolutional
Recurrent Layer Recurrent Layer
¥ ¥

Temporal Dependency Modeling
- Use Recurrent Neural Networks

Diffusion Convolutional  Diffusion Convolutional
Recurrent Layer Recurrent Layer
Input Graph
. . Signals .
Air quality & <GO> Forecasting
. . IS oo RelU veo osse .
time series ’ ¢

Retd result

Predictions

Delay =1

Encoder Copy States Decoder
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