Spatial Data Analytics with Classical Data Mining and Machine Learning Algorithms

Yao-Yi Chiang

Computer Science and Engineering

University of Minnesota

yaoyi@umn.edu

Mining Public Datasets for Modeling Intra-City PM_{2.5} Concentrations at a Fine Spatial Resolution

A motivating example

Lin Y., Pan F., Chiang Y.-Y., Stripelis D., Ambite J. L., Eckel S. P., and Habre R. (November 2017) Mining public datasets for modeling intra-city PM2.5 concentrations at a fine spatial resolution. ACM SIGSPATIAL.

Air Pollution is a Global Problem

Air Pollutant: PM_{2.5} and PM₁₀

PM_{2.5} : fine inhalable particles, with diameters that are generally 2.5 micrometers and smaller

United States Environmental Protection Agency

PM 2.5 & PM 10

Fine Beach Sand 90 microns in diameter

Source : US EPA

Air Quality Index

AQI: air quality index computed from a piecewise linear function of the pollutant concentration (e.g., 12.0 micrograms per cubic meter is 50 AQI for PM2.5).

Air Quality Index Levels of Health Concern	Numerical Value	Meaning
Good	0 to 50	Air quality is considered satisfactory, and air pollution poses little or no risk.
Moderate	51 to 100	Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.
Unhealthy for Sensitive Groups	101 to 150	Members of sensitive groups may experience health effects. The general public is not likely to be affected.
Unhealthy	151 to 200	Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.
Very Unhealthy	201 to 300	Health alert: everyone may experience more serious health effects.
Hazardous	301 to 500	Health warnings of emergency conditions. The entire population is more likely to be affected.

Limited Air Quality Observations

 Monitoring stations are usually sparse – 12 stations for PM_{2.5} in Los Angeles

Nearby locations would have similar air quality

• Tobler's 1st law of geography:

"all things are related, but nearby things are more related than distant things" Tobler – 1970

• Spatial interpolation? IDW?

Vandecasteele & Devillers, Improving volunteered geographic data quality using semantic similarity measurements

Typical Air Quality Prediction Result (AirNow)

Current Air Quality

https://www.airnow.gov/?reportingArea=Central%20LA%20CO&stateCode=CA

Inverse Distance Weighting

- Why are the results so smooth over space?
- Recall IDW:

$$u(\mathbf{x}) = \left\{ egin{array}{c} rac{\sum_{i=1}^N w_i(\mathbf{x}) u_i}{\sum_{i=1}^N w_i(\mathbf{x})} \ u_i, \end{array}
ight.$$

Dec 2016

9

Machine Learning Methods

 Some prediction variations in space, e.g., the road network is obvious

Existing Work for Air Quality Modeling

The built environment has a strong impact on air quality but *how*?

Land-use Regression Models (LUR)

 \sim

Authors	Study area	Monitor counts	Dependent variables	Independent variables	Buffer size	(Adjusted) R ²	
Briggs et al. (2000)	Huddersfield (UK) Sheffield (UK) Northampton (UK)	20, 28 and 35	NO ₂	Road traffic, urban land, and topography (altitudes)	300 m	0.58 to 0.76	
Ross et al. (2007)	New York City (US)	28–49	PM _{2.5}	Traffic, land use, census	50, 100, 300, 500 and 1000 m	0.607 to 0.642	
Su et al. (2008)	Greater Vancouver Regional District,	116	NO/NO ₂	Road, traffic, meteorology (wind speed, wind direction and cloud	3000 m	0.53 to 0.60	
Mavko et al. (2008)	Portland, (US)	77	NO ₂	Traffic-related; Land use-related; Elevation; height from MSL; distance to a river; wind; direction	50, 100, 250, 300, 350, 400, 500, 750 m.	0.66 to 0.81	
Rivera et al. (2012)	Girona province, (Spain)	25	Ultrafine particles (UFP)	Heavy, light and motorcy. veh in 24 h; 24 h total traffic load; length of major roads; <u>building density;</u> distance to bus lines, highway and intersections; land cover	25, 50, 100, 150, 300, 500 and 1000 m	0.36 to 0.72	
Eeftens et al. (2012)	20 European regions	20 per area	PM _{2.5} , PM ₁₀ and PMcoarse	Traffic intensity <u>, population</u> , and land-use	25, 50, 100, 300, 500, and 1000 m	0.35 to 0.94	c
Dons et al. (2013)	Flanders, (Belgium)	63	Traffic related air pollutant black	Hourly traffic streams, daily traffic volumes, total road length; population density a <u>nd address</u> <u>density</u> ; land use variables	50, 100, 1000 m	0.44 to 0.77	i
Lee et al. (2014)	Taipei, (China)	40	NO_x and NO_2	Land use, no. of population and households, road length, altitude, distance to roads, <u>ports</u>	25, 25–50, and 50–500 m	0.63 to 0.81	
Wu et al. (2015)	Beijing, (China)	35	PM _{2.5}	Traffic intensity, population, <u>bus</u> stops, restaurants, and land-use	100–3000 m	0.43 to 0.65	

Expert-selected & Area-specific

e.g., PM_{2.5} concentrations is high near 500 meters of highways in Los Angeles

Source: Liu et al., 2016

LUR Limitations

- Experts are expensive
- Do not scale well for predictions at various spatial and temporal resolutions
- Sometimes rely heavily on datasets that are not easy to obtain
 - e.g., traffic

Can we do better?

JonSnow: Data-Driven Air Quality Prediction at Fine-Spatial Scale

- Problem
 - Given some sensors and their locations, predicting air quality for locations that do not have a sensor
- Hypothesis
 - Similar environments should have a similar air quality

Data Collection

PRISMS-DSCIC – A scalable data integration and analysis architecture

Data Sources – I

AQS (Air Quality System) Data

Hourly PM_{2.5} AQI from **12 monitoring stations** in the Los Angeles Area from 2016-10-30 00:00:00 to 2017-08-31 23:00:00

			San Gabriel Mts
Monitoring Station	Timestamp	PM _{2.5} AQI	The formant of
San Gabriel Mts	2017-03-04 12:00:00	44	The second second
San Gabriel Mts	2017-03-04 13:00:00	54	
Central LA	2017-03-04 12:00:00	60	Central LA • Central LA • E San Fernando Vly
Central LA	2017-03-04 13:00:00	68	E San Gabriel V-2 WW Coastal LA San Gabriel VI South Coastal LA South Coastal LA South Coastal LA Southeast LA CO
Sample data			0 10 km W Coastal LA SW San Bernardino W San Gabriel Vly W San Gabriel Vly

Data Sources – II

Geographic Features - OpenStreetMap (OSM)

- Land uses (67,972 polygons), Roads (544,142 lines), Water areas (11,207 polygons), Buildings (2,971,349 points), Aeroways (962 lines), etc.
- Each geographic category contains various feature subtypes
 - e.g., subtypes for "Buildings": commercial, apartment, house, industrial, school, etc.

Recall: JonSnow: Data-Driven Air Quality Prediction at Fine-Spatial Scale

- Problem
 - Given some sensors and their locations, predicting air quality for locations that do not have a sensor
- Hypothesis
 - Similar environments should have a similar air quality

Approach Overview

- Similar environments should have a similar air quality
 - How to quantify "similar air quality"
 - Clustering of air quality measurements
 - K-Means, hierarchical clustering, dimension reduction
 - How to quantify "similar environments"
 - Train an interpretable machine learning model using geographical context to predict whether two locations would have "similar air quality"
 - Random Forest

19

Required Technologies

- Clustering
 - K-Means, Hierarchical Clustering
- Dimension Reduction
 - SVD (Singular Value Decomposition)
- Interpretable Machine Learning Method
 - Random Forest

Step 1. Grouping Stations based on their $PM_{2.5}$ AQIs

- To identify the monitoring stations that have similar temporal pattern on $\mathrm{PM}_{\mathrm{2.5}}$ AQIs
- These monitoring stations should have a similar environment.

K-means Clustering

• Input: time-series observations at each station

 Output: clusters of stations having a similar temporal pattern

K-means Clustering

- Recall: Hypothesis
 - Similar environments should have a similar air quality
- Stations in the same cluster have a similar temporal pattern
- How to quantify "similar environment"
 - what specific geographic feature types (e.g., primary roads, industrial areas, parks)
 - from what distance have the most impact on the clustering result?

 Output: clusters of stations having a similar temporal pattern

• e.g., Land uses, Water areas

• Generating a large vector for each monitoring station

	Pedestrian 100m	Motorway 100m	Pedestrian 200m	Motorway 200m	Park 100m	Industrial 100m	
Monitoring Station X	23	30	43	200	500	0	
Park 200m	Industria 200m	l Apartmer 100m	nt Factory 100m	y Apartme 200m	nt Fa	ctory Dista 00m to O	ance cean
950	740	2	0	8		3 40	000

- In practice, we creates buffers from 100 meters to 3,000 meters with an interval of 100 meters
 - 3,500+ components in a vector

How to quantify "similar environment"

Step 3. Computing Feature Importance

- Training a random forest model to
 - predict cluster label using the geographic context
 - each feature component represents a geographic feature type within certain distance
 - quantify the impact of each feature component

Step 3. Generating Geo-context

• Multiplying each geographic abstraction value by its feature importance to generate geo-context

Geographic Abstraction Vector $\mathbf{A} = [a_1, a_2, ..., a_n]$

Importance Vector $I = [i_1, i_2, ..., i_n]$

Geo-Context Vector C = A * I

Example of Importance

Geo-feature	Importance
Pedestrian 100m	0.000
Motorway 100m	0.109
Apartment 200m	0.041
Factory 200m	0.144
Total	1.0

Step 3. Geo-context

- Geo-context is an updated vector from geo-abstract for describing
 - how each feature type within a certain distance (a feature component) in Geographic Abstraction affects the Temporal Pattern (PM_{2.5} AQI)
- Reward important (relevant) features and penalize others

	Pedestrian	Motorway	··· Apartment	Factory
	100m	100m	200m	200m
(Geographic Abstraction)	- 23	30	2	3
-	Pedestrian	Motorway	Apartment	Factory
	_ 100m	100m	200m	200m
Monitoring Station 1 (Geo-context)	- 0.0	3.27	0.041	0.432

Step 4. Predicting PM_{2.5} AQI

Train a regression model to predict PM_{2.5} AQI for a target location at time T

[Geo-context, AQI] for each monitoring station at time T

Experiments

Leave-one-out cross-validation method

- Predict PM_{2.5} AQI for the removed station by using other 11 stations
- Compare our approach with baseline methods

Predicting at a fine scale

- Predict PM_{2.5} AQI of each point on an 1-mile-apart fishnet covering most of the Los Angeles area (604 points)
- Visualize the fine-scale prediction results

Experiment & Result – I

Leave-one-out cross-validation method

- Tested with three methods on three temporal scales
 - Geo-context, Geo-abstraction, IDW (Inverse distance weighting)
 - Monthly (7 months), daily (233 days), and hourly (168 hours)
 - RMSE root-mean-square error; MAE mean absolute error

	Geo – context	Geo – Abstraction	IDW –				
RMSE (Monthly)	2.53984	2.62391	2.88263				
MAE (Monthly)	1.86657	1.93673	2.18675	IDW method			
RMSE (Daily)	4.33786	4.35857	4.10172	22			
MAE (Daily)	3.26140	3.28176	3.10185	4 34 27		24 22 27 20 22	
RMSE (Hourly)	7.38823	7.59260 _	6.66106	33 2 1 2.5	$Z(x) = \Sigma w_i z_i =$	$\frac{34}{1^2} + \frac{33}{2^2} + \frac{27}{2.5^2} + \frac{30}{3^2} + \frac{22}{4^2}$	= 32.38
MAE (Hourly)	5.06559	5.12406	4.54779	3	Σw _i	$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{2^2}$	10

All within 10% error margin; Significant different with 95% confidence (paired t-test)

Experiment & Result – I (Cont'd)

Experiment & Result – II

Predicting PM_{2.5} AQIs at a fine scale

Geo Name	Buffer Size (meter)	Geo type	Importance (%)
land use	1100	wetland	0.0051177
land use	1300	university	0.004450
road	600	rail	0.0044327
land use	1200	village_green	0.0037241
road	700	primary	0.0035520
land use	1900	farmland	0.0031458
land use	2700	village_green	0.0030063
road	800	residential	0.0028980
building	2000	retail	0.0027980
building	900	industrial	0.0027576
road	500	tertiary	0.0027357
land use	900	pitch	0.0026613
building	2900	school	0.0025681
building	1700	garages	0.0025361
road	1300	motorway	0.0023724

Geo-context

IDW

Dec 2016

Jan 2017

Experiment & Result – II

Predicting PM_{2.5} AQIs at a fine scale

Geo Name	Buffer Size (meter)	Geo type	Importance (%)
land use	1100	wetland	0.0051177
land use	1300	university	0.004450
road	600	rail	0.0044327
land use	1200	village_green	0.0037241
road	700	primary	0.0035520
land use	1900	farmland	0.0031458
land use	2700	village_green	0.0030063
road	800	residential	0.0028980
building	2000	retail	0.0027980
building	900	industrial	0.0027576
road	500	tertiary	0.0027357
land use	900	pitch	0.0026613
building	2900	school	0.0025681
building	1700	garages	0.0025361
road	1300	motorway	0.0023724

Geo-context

Dec 2016

Jan 2017

Experiment & Result – II

Predicting PM_{2.5} AQIs at a fine scale

Geo Name	Buffer Size (meter)	Geo type	Importance (%)
land use	1100	wetland	0.0051177
land use	1300	university	0.004450
road	600	rail	0.0044327
land use	1200	village_green	0.0037241
road	700	primary	0.0035520
land use	1900	farmland	0.0031458
land use	2700	village_green	0.0030063
road	800	residential	0.0028980
building	2000	retail	0.0027980
building	900	industrial	0.0027576
road	500	tertiary	0.0027357
land use	900	pitch	0.0026613
building	2900	school	0.0025681
building	1700	garages	0.0025361
road	1300	motorway	0.0023724

Geo-context

IDW

Dec 2016

Jan 2017

Related Work

	Limitations	Advantages of our method
Spatial interpolation methods, e.g., IDW and Kriging	Not considering neighborhood characteristic	With neighboring geographic features
	Cannot generate a fine scale result with sparse monitoring stations	Can generate accurate result in a fine scale
Dispersion models	Require detailed data (e.g., building heights and distance between neighboring buildings)	Use easily accessible datasets (OpenStreetMap)
Land-use regression (LUR) methods (e.g., Hoek (2008))	Rely on expert-selected predictors, including types and spatial radii	Expert-free feature selection

Summary

- A spatial data mining approach to build an accurate model to predict PM_{2.5} concentrations at a fine scale by
- Automated selection of important geographic features without using expert knowledge.

Additionally, Air Quality Forecasting

Goal

Build a general approach for location-dependent time-series data forecasting

Challenges:

Existing approaches do not handle spatial correlation well e.g., Auto-Regression Integrated Moving Average (ARIMA), Kalman filtering, Artificial Neural Network (ANN)

Our approach

- We are building a Diffusion Convolutional Recurrent Neural Network for forecasting locationdependent time series data.
- Continuously forecasting air quality index (AQI) in next 24 hours at a fine scale using data on the PRISMS-DSCIC

Lin, Y., Mago, N., Gao, Y., Li, Y., Chiang, Y.-Y., Shahabi, C., and Ambite, J. L. (November 2018). Exploiting Spatiotemporal Patterns for Accurate Air Quality Forecasting using Deep Learning. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 359 – 368, Seattle, WA, USA

DCRNN – Diffusion Convolutional Recurrent Neural Network

Graph Construction

- Each point in the graph represents the time series at the station
- The link between points would be the proximity between stations
 - (e.g., distance, geographic similarity)

Spatial Dependency Modeling

Temporal Dependency Modeling

- Use Recurrent Neural Networks
- Use diffusion convolution to learn a function that maps historical graph signal to future graph signal

Acknowledgements

• Gil, Yolanda (Ed.) Introduction to Computational Thinking and Data Science. Available from http://www.datascience4all.org

These materials are released under a CC-BY License

https://creativecommons.org/licenses/by/2.0/

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Artwork taken from other sources is acknowledged where it appears. Artwork that is not acknowledged is by the author.

Please credit as: Chiang, Yao-Yi Introduction to Spatial Artificial Intelligence. Available from https://yaoyichi.github.io/spatial-ai.html

If you use an individual slide, please place the following at the bottom: "Credit: https://yaoyichi.github.io/spatial-ai.html

We welcome your feedback and contributions.

Credit: http://www.datascience4all.org/