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Mining Public Datasets for Modeling 
Intra-City PM2.5 Concentrations 
at a Fine Spatial Resolution
A motivating example
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Lin Y., Pan F., Chiang Y.-Y., Stripelis D., Ambite J. L., Eckel S. P., and Habre R. (November 2017) Mining public datasets for modeling intra-city PM2.5 concentrations at a fine spatial resolution. ACM SIGSPATIAL.



Air Pollution is a Global Problem
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Air Pollutant: PM2.5 and PM10
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PM2.5 : fine inhalable 
particles, with diameters that 
are generally 2.5 micrometers 
and smaller

United States Environmental 
Protection Agency



Air Quality Index
AQI: air quality index computed from a piecewise linear function of the pollutant 
concentration (e.g., 12.0 micrograms per cubic meter is 50 AQI for PM2.5).



Central LA

Limited Air Quality Observations

• Monitoring stations are usually 
sparse – 12 stations for PM2.5 in 
Los Angeles
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Nearby locations would have similar air quality

• Tobler's 1st law of geography: 

• Spatial interpolation? IDW?
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Vandecasteele & Devillers, Improving volunteered geographic data quality using semantic similarity measurements

“all things are related, but nearby things are 
more related than distant things” 

Tobler – 1970



Typical Air Quality Prediction Result (AirNow)
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https://www.airnow.gov/?reportingArea=Central%20LA%20CO&stateCode=CA



Inverse Distance Weighting

• Why are the results so 
smooth over space?
• Recall IDW:
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Machine Learning Methods

• Some prediction 
variations in space, 
e.g., the road network 
is obvious
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“Powered by proprietary algorithms,
strict QA & machine learning.”



Existing Work for Air Quality Modeling

The built environment has a strong impact on air quality but how?
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?



Land-use Regression Models (LUR)
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Expert-selected &
Area-specific

e.g., PM2.5 concentrations 
is high near 500 meters of 
highways in Los Angeles

Source: Liu et al., 2016

Taiwan



LUR Limitations
• Experts are expensive
• Do not scale well for predictions at 

various spatial and temporal 
resolutions

• Sometimes rely heavily on datasets that 
are not easy to obtain
• e.g., traffic
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Source: Liu et al., 2016

Can we do better?



JonSnow: Data-Driven Air Quality Prediction at 
Fine-Spatial Scale

• Problem
• Given some sensors and their 

locations, predicting air quality 
for locations that do not have a 
sensor

• Hypothesis
• Similar environments should 

have a similar air quality
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Data Collection

PRISMS-DSCIC – A scalable data integration and analysis architecture 
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Integration and Storage

Data Sources / Sensors

Streaming

Analytics

General Data Processing



Data Sources – I

AQS (Air Quality System) Data
• Hourly PM2.5 AQI from 12 monitoring stations in the Los Angeles Area from 2016-10-30 

00:00:00 to 2017-08-31 23:00:00
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Sample data

Monitoring Station Timestamp PM2.5 AQI

San Gabriel Mts 2017-03-04 
12:00:00 44

San Gabriel Mts 2017-03-04 
13:00:00 54

Central LA 2017-03-04 
12:00:00 60

Central LA 2017-03-04 
13:00:00 68

San Gabriel Mts

Central LA



Data Sources – II

Geographic Features - OpenStreetMap (OSM) 
• Land uses (67,972 polygons), Roads (544,142 lines), Water areas (11,207 polygons), Buildings 

(2,971,349 points), Aeroways (962 lines), etc.
• Each geographic category contains various feature subtypes

• e.g., subtypes for “Buildings”: commercial, apartment, house, industrial, school, etc.
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Recall: JonSnow: Data-Driven Air Quality 
Prediction at Fine-Spatial Scale

• Problem
• Given some sensors and their 

locations, predicting air quality 
for locations that do not have a 
sensor

• Hypothesis
• Similar environments should 

have a similar air quality
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Approach Overview

• Similar environments should have a similar air quality
• How to quantify “similar air quality”

• Clustering of air quality measurements
• K-Means, hierarchical clustering, dimension reduction

• How to quantify ”similar environments”
• Train an interpretable machine learning model using 

geographical context to predict whether two locations 
would have “similar air quality”

• Random Forest
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Required Technologies

• Clustering
• K-Means, Hierarchical Clustering

• Dimension Reduction
• SVD (Singular Value Decomposition)

• Interpretable Machine Learning Method
• Random Forest
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Step 1. Grouping Stations based on their 
PM2.5 AQIs 

• To identify the monitoring stations that have similar temporal pattern on PM2.5
AQIs

• These monitoring stations should have a similar environment.



Similar Temporal Pattern
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San Gabriel Area



K-means Clustering

• Input: time-series observations at 
each station

• Output: clusters of stations having a 
similar temporal pattern
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K-means Clustering

• Recall: Hypothesis
• Similar environments should 

have a similar air quality
• Stations in the same cluster have a

similar temporal pattern
• How to quantify “similar environment”

• what specific geographic feature
types (e.g., primary roads, industrial
areas, parks)

• from what distance have the most
impact on the clustering result?

• Output: clusters of stations having a 
similar temporal pattern
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[23, 30, 43, 200]

Step 2. Generating Geographic Abstraction 

Length of line features 
• e.g., Roads, Aeroways

100m 200m

Pedestrian 23 43

Motorway 30 200

Example Roads



[2, 0, 8, 3]

Step 2. Generating Geographic Abstraction 

Count of point features 
• e.g., Buildings

100m 200m

Apartment 2 8

Factory 0 3

Example Buildings



Step 2. Generating Geographic Abstraction 

Area of polygon features 
• e.g., Land uses, Water areas

100m 200m

Park 500 950

Industrial 0 740

Example Land uses

[500, 0, 950, 740]



Step 2. Generating Geographic Abstraction 

• Generating a large vector for each monitoring station

• In practice, we creates buffers from 100 meters to 3,000 meters with an interval 
of 100 meters
• 3,500+ components in a vector
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Geographic abstraction Clustering result
?
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Step 3. Computing Feature Importance

• Training a random forest model to                                           
• predict cluster label using the geographic context 

• each feature component represents a geographic feature type within 
certain distance

• quantify the impact of each feature component 
Temporal pattern cluster
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Step 3. Generating Geo-context

• Multiplying each geographic abstraction value by its feature importance to 
generate geo-context

Geo-feature Importance

Pedestrian 100m 0.000

Motorway 100m 0.109

… …

Apartment 200m 0.041
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… …

Total 1.0

Pedestrian
100m

23Monitoring Station 1
(Geographic Abstraction)

Motorway
100m

30

Apartment
200m

2

Factory
200m

3

…

Pedestrian
100m

0.0Monitoring Station 1
(Geo-context)

Motorway
100m

3.27

Apartment
200m

0.041

Factory
200m

0.432
…

Example of Importance



Step 3. Geo-context 

• Geo-context is an updated vector 
from geo-abstract for describing
• how each feature type within 

a certain distance (a feature 
component) in Geographic 
Abstraction affects the 
Temporal Pattern (PM2.5 AQI) 

• Reward important (relevant) 
features and penalize others
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Step 4. Predicting PM2.5 AQI

Train a regression model to predict PM2.5 AQI for a target location at time T

[Geo-context] for target location

Regression 
Model

AQI prediction of 
target location

[Geo-context, AQI] for each monitoring station at time T



Experiments

Leave-one-out cross-validation method
• Predict PM2.5 AQI for the removed station by using other 11 stations
• Compare our approach with baseline methods

Predicting at a fine scale
• Predict PM2.5 AQI of each point on an 1-mile-apart fishnet covering most of the Los Angeles 

area (604 points)

• Visualize the fine-scale prediction results



Experiment & Result – I 

Leave-one-out cross-validation method

• Tested with three methods on three temporal scales
• Geo-context, Geo-abstraction, IDW (Inverse distance weighting)

• Monthly (7 months), daily (233 days), and hourly (168 hours)

• RMSE - root-mean-square error; MAE - mean absolute error

IDW method

All within 10% error margin; Significant different with 95% confidence (paired t-test)



Experiment & Result – I (Cont’d) 



Experiment & Result – II 

Predicting PM2.5 AQIs at a fine scale

Dec 2016 Dec 2016

Jan 2017 Jan 2017

Geo-context IDW



Experiment & Result – II 

Predicting PM2.5 AQIs at a fine scale

Dec 2016 Dec 2016

Jan 2017 Jan 2017

Geo-context IDW



Experiment & Result – II 

Predicting PM2.5 AQIs at a fine scale

Dec 2016 Dec 2016

Jan 2017 Jan 2017

Geo-context IDW



Related Work

Limitations Advantages of 
our method

Spatial interpolation 
methods, e.g., IDW and 
Kriging

Not considering neighborhood 
characteristic

With neighboring geographic 
features

Cannot generate a fine scale result with 
sparse monitoring stations

Can generate accurate result in a 
fine scale

Dispersion models
Require detailed data (e.g., building 
heights and distance between neighboring 
buildings)

Use easily accessible datasets
(OpenStreetMap)

Land-use regression 
(LUR) methods 
(e.g., Hoek (2008))

Rely on expert-selected predictors, 
including types and spatial radii Expert-free feature selection



Summary

• A spatial data mining approach to build an 
accurate model to predict PM2.5
concentrations at a fine scale by

• Automated selection of important 
geographic features without using expert 
knowledge.



Additionally, Air Quality Forecasting

Goal
Build a general approach for location-dependent time-series data forecasting

Challenges: 
Existing approaches do not handle spatial correlation well
e.g., Auto-Regression Integrated Moving Average (ARIMA), Kalman filtering, 
Artificial Neural Network (ANN)

Our approach
• We are building a Diffusion Convolutional Recurrent Neural Network for forecasting location-

dependent time series data.
• Continuously forecasting air quality index (AQI) in next 24 hours at a fine scale using data on 

the PRISMS-DSCIC

Lin, Y., Mago, N., Gao, Y., Li, Y., Chiang, Y.-Y., Shahabi, C., and Ambite, J. L. (November 2018). Exploiting Spatiotemporal Patterns for Accurate Air Quality Forecasting using Deep Learning. In 
Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 359 – 368, Seattle, WA, USA



DCRNN – Diffusion Convolutional Recurrent Neural 
Network

Spatial Dependency Modeling
- Use diffusion convolution to learn a 

function that maps historical graph signal 
to future graph signal

Temporal Dependency Modeling
- Use Recurrent Neural Networks

Graph Construction
- Each point in the graph represents the time series at the station
- The link between points would be the proximity between stations

(e.g., distance, geographic similarity)

Air quality 
time series 

Forecasting 
result
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These materials are released under a CC-BY 
License 

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, 
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

https://creativecommons.org/licenses/by/2.0/

Please credit as: Chiang, Yao-Yi Introduction to Spatial Artificial Intelligence.  Available from 
https://yaoyichi.github.io/spatial-ai.html

If you use an individual slide, please place the following at the bottom: “Credit: 
https://yaoyichi.github.io/spatial-ai.html
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