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¡ Given a cloud of data points we want to 
understand its structure
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¡ Given a set of points, with a notion of distance
between points, group the points into some 
number of clusters, so that 
§ Members of a cluster are close/similar to each other
§ Members of different clusters are dissimilar

¡ Usually:
§ Points are in a high-dimensional space
§ Similarity is defined using a distance measure

§ Euclidean, Cosine, Jaccard, edit distance, …
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¡ Clustering in two dimensions looks easy
¡ Clustering small amounts of data looks easy

¡ Many applications involve not 2, but 10 or 
10,000 dimensions

¡ High-dimensional spaces look different: 
Almost all pairs of points are at about the 
same distance
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¡ Consider a set of data points on a line
§ dist(a, b) < dist(a, c)

¡ Consider increasing the dimension by 1
§ dist(a, b) ~ dist(a, c)
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¡ Cosine(a, b) > Cosine(a, c)

¡ Increase d to 3
§ Cosine(a, b) ~ Cosine(a, c)

¡ Higher d
§ Angle -> 90o

§ Cosine -> 0
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¡ Data points have similar distance btw each other
§ Euclidean distance breaks
§ almost all pairs of points are equally far away from one another

¡ Data vectors become orthogonal
§ Cosine function breaks
§ almost any two vectors are orthogonal
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¡ Intuitively: Music divides into categories, and 
customers prefer a few categories
§ But what are categories really?

¡ Represent a CD by a set of customers who 
bought it:

¡ Similar CDs have similar sets of customers, 
and vice-versa
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Space of all CDs:
¡ Think of a space with one dim. for each 

customer
§ Values in a dimension may be 0 or 1 only
§ A CD is a point in this space (x1, x2,…, xk), 

where xi = 1 iff the i th customer bought the CD

¡ For Amazon, the dimension is tens of millions

¡ Task: Find clusters of similar CDs
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¡ As with CDs we have a choice when we 
think of documents as sets of words or 
shingles:
§ as vectors: Measure similarity by the cosine 

distance
§ as sets: Measure similarity by the Jaccard 

distance
§ as points: Measure similarity by Euclidean 

distance
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¡ Hierarchical:
§ Agglomerative (bottom up):

§ Initially, each point is a cluster
§ Repeatedly combine the two 

“nearest” clusters into one

§ Divisive (top down):
§ Start with one cluster and recursively split it

¡ Point assignment:
§ Maintain a set of clusters
§ Points belong to “nearest” cluster
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¡ Key operation: 
Repeatedly combine 
two nearest clusters

¡ Three important questions:
§ 1) How do you represent a cluster of more 

than one point?
§ 2) How do you determine the “nearness” of 

clusters?
§ 3) When to stop combining clusters?
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¡ Key operation: Repeatedly combine two 
nearest clusters

¡ (1) How to represent a cluster of many points?
§ Euclidean case: each cluster has a 
centroid = average of its (data)points

¡ (2) How to determine “nearness” of clusters?
§ Measure cluster distances by distances of centroids
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What about the Non-Euclidean case?
¡ The only “locations” we can talk about are the 

points themselves
§ i.e., there is no “average” of two points

¡ Approach 1:
§ (1) How to represent a cluster of many points?
clustroid = (data)point “closest” to other points

§ (2) How do you determine the “nearness” of 
clusters? Treat clustroid as if it were centroid, when 
computing inter-cluster distances
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¡ (1) How to represent a cluster of many points?
clustroid = point “closest” to other points

¡ Possible meanings of “closest”:
§ Smallest maximum distance to other points
§ Smallest average distance to other points
§ Smallest sum of squares of distances to other points

§ For distance metric d clustroid c of cluster C is:
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Centroid is the avg. of all (data)points 
in the cluster. This means centroid is 
an “artificial” point.
Clustroid is an existing (data)point 
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¡ (2) How do you determine the “nearness” of 
clusters? 
§ Approach 2:

Intercluster distance = minimum of the distances 
between any two points, one from each cluster

§ Approach 3:
Pick a notion of “cohesion” of clusters, e.g., 
maximum distance from the clustroid
§ Merge clusters whose union is most cohesive
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¡ Approach 3.1: Use the diameter of the 
merged cluster = maximum distance between 
points in the cluster

¡ Approach 3.2: Use the average distance
between points in the cluster

¡ Approach 3.3: Use a density-based approach
§ Take the diameter or avg. distance, e.g., and divide 

by the number of points in the cluster
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¡ Consider a cluster of 4 points: 
§ abcd, aecdb, abecb, ecdab

¡ Their edit distances:
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aecdb abecb ecdab

abcd 3 3 5

aecdb 2 2

abecb 4

Insertion
Deletion
Substitution



¡ aecdb will be chosen as clusteroid
§ Located in “center” judged by all 3 measures 
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aecdb abecb ecdab

abcd 3 3 5

aecdb 2 2

abecb 4

Point Sum Sum-sq Max

abcd 11 43 5

aecdb 7 17 3

abecb 9 29 4

ecdab 11 45 5



¡ n data points
¡ At most n – 1 step of merging

¡ Naive implementation, e.g., storing pairwise 
cluster distances in a matrix
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C1 C2 C3 C4

C1 0 2 3 2

C2 0 4 5

C3 0 3

C4 0



• Initially, O(n2) for creating matrix and finding 
pair with minimum distance

• Subsequent merge, assuming matrix: k x k
– Delete columns for old clusters: O(k)
– Add new column for new cluster C’: O(k)
– Compute dist. of C’ with other clusters: O(k)
– Find new pair of clusters with min. dist: O(k2)

=> Overall complexity: O(n3)
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¡ Naïve implementation of hierarchical 
clustering:
§ At each step, compute pairwise distances 

between all pairs of clusters, then merge
§ O(N3)

¡ Careful implementation using priority queue 
can reduce time to O(N2 log N) (read textbook)
§ Still too expensive for really big datasets 

that do not fit in memory
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¡ Assumes Euclidean space/distance

¡ Start by picking k, the number of clusters

¡ Initialize clusters by picking one point per 
cluster
§ Example: Pick one point at random, then  k-1 

other points, each as far away as possible from 
the previous points
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¡ 1) For each point, place it in the cluster whose 
current centroid it is nearest

¡ 2) After all points are assigned, update the 
locations of centroids of the k clusters

¡ 3) Reassign all points to their closest centroid
§ Sometimes moves points between clusters

¡ Repeat 2 and 3 until convergence
§ Convergence: Points don’t move between clusters 

and centroids stabilize
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How to select k?
¡ Try different k, looking at the change in the 

average distance to centroid as k increases
¡ Average falls rapidly until right k, then 

changes little
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k

Average
distance to

centroid

Best value
of k
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¡ Clustering: Given a set of points, with a notion 
of distance between points, group the points
into some number of clusters

¡ Algorithms:
§ Agglomerative hierarchical clustering: 

§ Centroid and clustroid

§ k-means: 
§ Initialization, picking k
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