Random Forest

Yao-Yi Chiang Computer Science and Engineering University of Minnesota yaoyi@umn.edu

Slides adopted from Machine Learning 10601, Recitation 8, Oct 21, 2009 Oznur Tastan (http://people.sabanciuniv.edu/otastan/)

Outline

- Tree representation
- Brief information theory
- Learning decision trees
- Bagging
- Random forests

Decision trees

- Non-linear classifier & regressor
- Easy to use
 - Can handle both numerical and categorial variables
- Easy to interpret
- Non-parametric method
- Susceptible to overfitting but can be avoided

Anatomy of a decision tree Each node is a test on one attribute Outlook sunny rain Possible attribute values overcast of the node Yes Humidity Windy high normal false true Leafs are the No Yes No Yes decisions

Anatomy of a decision tree

To 'play tennis' or not

To 'play tennis' or not

How environment affect air quality

Decision trees

- Decision trees represent a disjunction of conjunctions of constraints on the attribute values of instances.
- (Outlook ==overcast)
- OR
- ((Outlook==rain) and (Windy==false))
- OR
- ((Outlook==sunny) and (Humidity=normal))
- => yes play tennis

Decision trees as a regressor

https://gdcoder.com/decision-tree-regressor-explained-in-depth/

Tree Representation

Same concept different representation

Which attribute to select for splitting?

How do we choose the test ?

Which attribute should be used as the test?

Intuitively, you would prefer the attribute that *separates* the training examples as much as possible.

Information Gain

• Information gain is one criteria to decide on the split attribute.

Information

Imagine:

- 1. Someone is about to tell you your own name
- 2. You are about to observe the outcome of a dice roll
- 2. You are about to observe the outcome of a coin flip
- 3. You are about to observe the outcome of a biased coin flip
- Each situation have a different *amount of uncertainty* as to what outcome you will observe.

Information Theory

- Information:
- reduction in uncertainty (amount of surprise in the outcome)

$$I(E) = \log_2 \frac{1}{p(x)} = -\log_2 p(x)$$

If the probability of this event happening is small and it happens the information is large.

- Observing the outcome of a coin flip is head $\longrightarrow I = -\log_2 1/2 = 1$
- Observe the outcome of a dice is 6 $\longrightarrow I = -\log_2 1/6 = 2.58$

Watch this: https://www.youtube.com/watch?v=v68zYyaEmEA

Entropy of an information source

• The *expected amount of information* (in bits with log base 2) when observing the output of a random variable X

$$H(X) = E(I(X)) = \sum_{i} p(x_i)I(x_i) = -\sum_{i} p(x_i)\log_2 p(x_i)$$

If X can have 8 outcomes and all are equally likely

 $H(X) == -\sum_{i} \frac{1}{8 \log_2 1} = 3$ bits If X can have 6 outcomes and all are equally likely

$$6 \times 1/6 \times I = -\log_2 1/6 = 2.58$$

Biased dice roll that shows only 1 or 2 50% of the chance $50\% \times 1 + 50\% \times 1 + 4 \times 0$

 $I = -\log_2 1/2 = 1$

Entropy

Equality holds when all outcomes are equally likely

The more the probability distribution deviates from uniformity the lower the entropy

Fair dice roll: $6 \times 1/6 \times I = -\log_2 1/6 = 2.58$

Biased dice roll that shows only 1 or 2 50% of the chance: $50\% \times 1 + 50\% \times 1 + 4 \times 0$

 $I = -\log_2 1/2 = 1$

Entropy, purity

Entropy measures the purity

The distribution is less uniform Entropy is lower The node is purer

Information Gain

IG(X,Y)=H(X)-H(X|Y)

Reduction in uncertainty by knowing Y

Information gain: (information before split) – (information after split)

Conditional entropy

$$H(X) = -\sum_{i} p(x_i) \log_2 p(x_i)$$

$$H(X | Y) = -\sum_{j} p(y_{j})H(X | Y = y_{j})$$

$$= -\sum_{j} p(y_{j}) \sum_{i} p(x_{i} | y_{j}) \log_{2} p(x_{i} | y_{j})$$

Information Gain

Information gain:

• (information before split) – (information after split)

Example

Information gain: (information before split) – (information after split)

 $\begin{array}{rcl} & \mathsf{H}(\mathsf{X}) = \mathsf{H}(\mathsf{Y}) - \mathsf{H}(\mathsf{Y} | \mathsf{X}1) \\ & & \mathsf{H}(\mathsf{Y}) = -(5/10) \log(5/10) - 5/10 \log(5/10) = 1 \\ \mathsf{X}_{1:} \mathsf{T}, \mathsf{F} \\ \mathsf{X}_{2:} \mathsf{T}, \mathsf{F} \end{array} \qquad \begin{array}{rcl} \mathsf{H}(\mathsf{Y}) = -(5/10) \log(5/10) - 5/10 \log(5/10) = 1 \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}1) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) + \mathsf{P}(\mathsf{X}_{1} = \mathsf{F}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) + \mathsf{P}(\mathsf{X}_{1} = \mathsf{F}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{T}) \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1} = \mathsf{T}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{X}_{1}) = \mathsf{P}(\mathsf{X}_{1} = \mathsf{Y}) \mathsf{H}(\mathsf{Y} | \mathsf{Y}_{1} = \mathsf{Y}) \\ \mathsf{H}(\mathsf{Y} | \mathsf{Y}) = \mathsf{H}(\mathsf{Y} | \mathsf{Y}) = \mathsf{H}(\mathsf{Y} | \mathsf{Y}) \mathsf{H}(\mathsf{Y} | \mathsf{Y}) = \mathsf{H}(\mathsf{Y} | \mathsf{Y})$

Information gain (X1,Y)= 1-0.39=0.61

I: loop through +, -

Which one do we choose?

X1	X2	Y	Count
Т	Т	+	2
Т	F	+	2
F	Т	-	5
F	F	+	1

Information gain (X1,Y)= 0.61 Information gain (X2,Y)= 0.12

Pick the variable which providesthe most information gain about YPick X1

Recurse on branches

X1	X2	Y	Count
Т	Т	+	2
Т	F	+	2
F	Т	-	5
F	F	+	1

One branch

The other branch

Purity (diversity) measures

- Gini (population diversity)
- Information Gain
- Chi-square Test

Overfitting

- You can perfectly fit to any training data
- Two approaches:
 - Stop growing the tree when further splitting the data does not yield an improvement
 - Grow a full tree, then prune the tree, by eliminating nodes

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote17.html

Bagging

- Bagging or *bootstrap aggregation* a technique for reducing the variance of an estimated prediction function.
- For classification, a *committee* of trees each cast a vote for the predicted class.

Bootstrap

The basic idea:

randomly draw datasets *with replacement* from the training data, each sample *the same size as the original training set*

Construct a decision tree

Bagging : a simulated example

- Generated a sample of size N = 30,
 - two classes and p = 5 features, each having a standard Gaussian distribution with pairwise correlation 0.95.
- The response Y was generated according to
 - $\Pr(Y = 1/x1 \le 0.5) = 0.2$,
 - Pr(Y = 0/x1 > 0.5) = 0.8.

Bagging

1

1

Notice the bootstrap trees are different than the original tree

1

1 0

0 1

$\Pr(Y = 1/x1 \le 0.5) = 0.2,$ Pr(Y = 0/x1 > 0.5) = 0.8.

Bagging

FIGURE 8.10. Error curves for the bagging example of Figure 8.9. Shown is the test error of the original tree and bagged trees as a function of the number of bootstrap samples. The orange points correspond to the consensus vote, while the green points average the probabilities.

bagging helps under squared-error loss, in short because averaging reduces

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf Example 8.7.1

• Random forest classifier, an extension to bagging which uses *decorrelated* trees.

Training Data

Construct a decision tree

Create decision tree from each bootstrap sample

Importance Score (Categorical RF)

Random Forest: income

Correct predictions (based on out-of-bag sample): 82% (<=50K: 90.13%; >50K: 57.03%)

	<=50K	>50K	MeanDecreaseAccuracy	Importance (MeanDecreaseGini)	
occupation	0.022	0.063	0.032		115.53	
age	-0.001	0.065	0.016		108.30	
education_num	0.023	0.077	0.036		96.92	
relationship	0.022	0.079	0.036		80.74	
hrs_per_week	0.002	0.039	0.011		67.80	
marital	0.024	0.066	0.034		61.21	
workclass	0.007	-0.006	0.004		41.75	
country	0.000	-0.006	How much the accura	icy The	e decrease of Gini ir	npurity
n = 2000 cases used in estimation;		decreases when the variable is excluded	wh spl	when a variable is chosen to split a node		

https://www.displayr.com/how-is-variable-importance-calculated-for-a-random-forest/

Importance Scores (Categorical RF)

- Gini Importance (mean decrease impurity)
 - On average, how the selected feature at a node decreases the impurity of the split
 - Measured for every three
 - Derived from the RF structure
 - Often prefer numerical features (or categorical features with high cardinality)
 - Ignore important but not the most important features at a node
- Mean Decrease Accuracy
 - Set a feature with random values (so that it has no predictive power)
 - Calculate how the accuracy number decreases

Random forest Resouces

- Available package:
- <u>https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html</u>
- <u>https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.mllib.tree.RandomForest</u> <u>.html</u>
- To read more:
- http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

Acknowledgements

- Gil, Yolanda (Ed.) Introduction to Computational Thinking and Data Science. Available from http://www.datascience4all.org
- Oznur Tastan, Geoffrey J. Gordon, Machine Learning 10601, Recitation 8, Oct 21, 2009 (<u>http://people.sabanciuniv.edu/otastan/</u>, <u>https://www.cs.cmu.edu/~ggordon/10601/recitations/rec08/Rec08_Oct21.ppt</u>)