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Outline

• Tree representation
• Brief information theory
• Learning decision trees
• Bagging 
• Random forests



Decision trees

• Non-linear classifier & regressor
• Easy to use 

• Can handle both numerical and categorial variables

• Easy to interpret
• Non-parametric method
• Susceptible to overfitting but can be avoided 
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To ‘play tennis’ or not
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A new test example:
(Outlook==rain) and 
(Windy==false)

Pass it on the tree
-> Decision is yes.



To ‘play tennis’ or not
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Windy

(Outlook ==overcast)  -> yes
(Outlook==rain) and (Windy==false) ->yes
(Outlook==sunny) and (Humidity=normal) ->yes



How environment affect air quality
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Decision trees

• Decision trees represent a disjunction of conjunctions of constraints 
on the attribute values of instances.

• (Outlook ==overcast)  
• OR
• ((Outlook==rain) and (Windy==false))
• OR
• ((Outlook==sunny) and (Humidity=normal))
• => yes play tennis



Decision trees as a regressor

https://gdcoder.com/decision-tree-regressor-explained-in-depth/

Use mean response in the region as the result



Tree Representation
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Same concept different representation
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Which attribute to select for splitting?
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How do we choose the test ?
Which attribute should be used as the test?

Intuitively, you would prefer the 
attribute that separates the training
examples as much as possible.



Information Gain

• Information gain is one criteria to decide on the split attribute.



Information

Imagine:
• 1. Someone is about to tell you your own name
• 2. You are about to observe the outcome of a dice roll
• 2. You are about to observe the outcome of a coin flip
• 3. You are about to observe the outcome of a biased coin flip

• Each situation have a different amount of uncertainty as to what 
outcome you will observe.



Information Theory

• Information:
• reduction in uncertainty (amount of surprise in the outcome)
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= = -

• Observing the outcome of a coin flip is head

• Observe the outcome of a dice is 6

2log 1/ 2 1I = - =

2log 1/ 6 2.58I = - =

If the probability of this event happening is small and it happens 
the information is large.

Watch this: https://www.youtube.com/watch?v=v68zYyaEmEA



Entropy of an information source

• The expected amount of information (in bits with log base 2) when 
observing the output of a random variable X

2( ) ( ( )) ( ) ( ) ( ) log ( )i i i i
i i

H X E I X p x I x p x p x= = = -å å
If X can have 8 outcomes and all are equally likely

2( ) 1/ 8log 1/8 3
i

H X == - =å bits

If X can have 6 outcomes and all are equally likely

2log 1/ 6 2.58I = - =6 x 1/6 x

Biased dice roll that shows only 1 or 2 50% of the chance 
50% x 1 + 50% x1 + 4 x 0  

2log 1/ 2 1I = - =



Entropy
Equality holds when all outcomes 
are equally likely 

The more the probability 
distribution deviates from 
uniformity the lower the entropy

e.g., unbiased coin toss – p = 
0.5 has the highest entropy 1

Fair dice roll: 2log 1/ 6 2.58I = - =6 x 1/6 x

Biased dice roll that shows only 1 or 2 50% of the chance: 
50% x 1 + 50% x1 + 4 x 0  

2log 1/ 2 1I = - =



Entropy, purity

Entropy measures the purity 

4 +
4 -

8 +
0 -

The distribution is less uniform
Entropy  is lower
The node is purer 



Information Gain

IG(X,Y)=H(X)-H(X|Y)

Reduction in uncertainty by knowing Y

Information gain: 
(information before split) – (information after split)



Conditional entropy
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Information Gain

Information gain: 
• (information before split) – (information after split)



Example

X1 X2 Y Count

T T + 2

T F + 2

F T - 5

F F + 1

Attributes Labels

IG(X1,Y) =  H(Y) – H(Y|X1)

H(Y)       = - (5/10) log(5/10) -5/10log(5/10) = 1
H(Y|X1) =  P(X1=T)H(Y|X1=T) + P(X1=F) H(Y|X1=F)

=  4/10 (1log 1 + 0 log 0) +6/10 (5/6log 5/6 +1/6log1/6)

= 0.39
Information gain (X1,Y)= 1-0.39=0.61

Which one do we 
choose X1 or X2?

X1 X2 Y Count

T T + 2

T F + 2

F T - 5

F F + 1

Attributes Labels

2( ) ( | ) log ( | )j i j i j
j i
p y p x y p x y= -å å

( | ) ( ) ( | )j j
j

H X Y p y H X Y y= - =å

- +

2( ) ( ) log ( )i i
i

H X p x p x= -å
+ -

Information gain: (information before split) – (information after split)

Y: +, -
X1: T, F
X2: T, F

J: loop through T, F
I: loop through +, -

+ -



Which one do we choose?

X1 X2 Y Count

T T + 2

T F + 2

F T - 5

F F + 1

Information gain (X1,Y)= 0.61

Information gain (X2,Y)= 0.12

Pick X1
Pick  the  variable which provides 
the most  information gain about Y



Recurse on branches

X1 X2 Y Count

T T + 2

T F + 2

F T - 5

F F + 1

One branch

The other branch



Purity (diversity) measures

• Gini (population diversity)
• Information Gain
• Chi-square Test



Overfitting

• You can perfectly fit to any training 
data

• Two approaches:
• Stop growing the tree when further 

splitting the data does not yield an 
improvement

• Grow a full tree, then prune the tree, by 
eliminating nodes

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote17.html



Bagging

• Bagging or bootstrap aggregation a technique for reducing the 
variance of an estimated prediction function. 

• For classification, a committee of trees each cast a vote for the 
predicted class.



Bootstrap
The basic idea:

randomly draw datasets with replacement from the 
training data, each sample the same size as the original training set
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Bagging : a simulated example

• Generated a sample of size N = 30, 
• two classes and p = 5 features, each having a standard Gaussian 

distribution with pairwise correlation 0.95. 

• The response Y was generated according to 
• Pr(Y = 1|x1 ≤ 0.5) = 0.2,
• Pr(Y = 0|x1 > 0.5) = 0.8.



Bagging 

Notice the bootstrap trees are different than the original tree

Pr(Y = 1|x1 ≤ 0.5) = 0.2,
Pr(Y = 0|x1 > 0.5) = 0.8.



Bagging

Treat the voting
Proportions as 
probabilities

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf Example 8.7.1

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf


Random forest classifier

• Random forest classifier, an extension to bagging which uses de-
correlated trees.
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At each node in choosing the split feature
choose only among m<M features



Random Forest Classifier
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Importance Score (Categorical RF)

https://www.displayr.com/how-is-variable-importance-calculated-for-a-random-forest/

How much the accuracy 
decreases when the 
variable is excluded

The decrease of Gini impurity 
when a variable is chosen to 
split a node



Importance Scores (Categorical RF)

• Gini Importance (mean decrease impurity)
• On average, how the selected feature at a node decreases the impurity of 

the split
• Measured for every three
• Derived from the RF structure
• Often prefer numerical features (or categorical features with high 

cardinality)
• Ignore important but not the most important features at a node

• Mean Decrease Accuracy
• Set a feature with random values (so that it has no predictive power)
• Calculate how the accuracy number decreases 



Random forest Resouces

• Available package:

• https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

• https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.mllib.tree.RandomForest
.html

• To read more:

• http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.mllib.tree.RandomForest.html
http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf
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