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What have we
covered so
far?

 Clustering

* Dimension
Reduction

e Random Forest
e Classification
* Regression

https://vas3k.com/blog/machine_learning/

CLASS|CAL MACHINE LEARNING

Data is pre-categorized
or numerical

SUPERVISED

Predict
a number

REGRESSION

Predict
a category

CLASSIFICATION

«Divide the socks by color»

o

«Divide the ties by length»

Data is not labeled
n any way

UNSUPERVISED

by Smﬁg}ﬁitey |dentify sequences
CLUSTERING B g
«Split up similar clothing dependencies

into Stacks»

ASSOCIATION

«Find What clothes | often
wear together»

DIMENS|ON
REDUCTION
(generalization)

«Make the best outfits from the given clothes»



What have we THE MAIN TYPES OF MACHINE LEARNING

covered so
far?
e Classical ML

* Ensembles

https://vas3k.com/blog/machine_learning/

Simple data When quality is \Compticated data
Clear features a real problem Unclear features
/ Belief in a miracle
ENSEMBLES
CLASS|CAL
ML
No data, NEURAL NETWORKS
but we howe}c AND
n nvirgn n
o w?tjmoctm\?v‘th DEEP LEARNING
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LEARNING



Overhead Imagery Understanding Tasks

Image Recognition Image Segmentation Object Detection Instance Segmentation

I Building B Vehicle

Thorsten Hoeser and Claudia Kuenzer. 2020. Object detection and image segmentation with deep learning on earth observation 4
data: A review-part i: Evolution and recent trends. Remote Sensing. Retrieved from https://www.mdpi.com/723500



https://www.mdpi.com/723500

Object Detection & Recognition in 1999

SIFT (Scale Invariant Feature Transform)

e SIFT is one of most
popular image
feature extraction

and description SRR ¢ X |-
algorithms 05 EneE BEge | %
o ‘
e SIFT extracts feature .:. - | -
points and describe £ GBG os gt N A
JunopRn S4n

them with a scale,
illumination, and
rotational invariant
descriptor

Image gradients Keypoint descriptor

https://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O



Object Detection & Recognition in 1999

SIFT (Scale Invariant Feature Transform)

Train Image
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Object Detection & Recognition in 1999

SIFT (Scale Invariant Feature Transform)

Query Image Query Image Keypoints
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Object Detection & Recognition in 1999

SIFT (Scale Invariant Feature Transform)

Feature Machted using SIFT

200
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https://ig.opengenus.org/scale-invariant-feature-transform/



Object Detection & Recognition in 1999

SIFT (Scale Invariant Feature Transform)

https://ig.opengenus.org/scale-invariant-feature-transform/



Object Detection & Recognition in 1999

SIFT (Scale Invariant Feature Transform)

https://ig.opengenus.org/scale-invariant-feature-transform/
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Map Processing
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Handcrafted Image Features

* Pros
* Simple, easy to implement
* Do not require significant computational power
* Somehow explainable results

* Cons
* Not very robust (e.g., objects need to be very similar for a match)
* Limited computer vision applications



What have we THE MAIN TYPES OF MACHINE LEARNING

covered so
far?
e Classical ML

* Ensembles

https://vas3k.com/blog/machine_learning/

\Compticated data

Unclear features
Belief in a miracle

Simple data When quality is
Clear features a real problem
/ ENSEMBLES
CLASSICAL
ML

No data,
but we have
an environment
to interact with

\

NEURAL NETWORKS
AND
DEEP LEARNING

:

REINFORCEMENT
LEARNING
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Neural Networks and Deep
Learning



Deep Neural Networks

* Neural networks with

lots of “neurons” and 10 _ o NEURON
layers '

10%0S + #%x1.0 + 3%0.1
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Deep Neural Networks

Inputs

* Neural networks with - idden Loers
lots of “neurons” and A
layers

* Flexible network
modules

* Can capture non-linear
relationships in data

MULTILAYER PERCEPTRON (MLP)

16
https://vas3k.com/blog/machine_learning/



Deep Neural Networks

* Neural networks with
lots of “neurons” and
layers

* Flexible network
modules

* Can capture non-linear
relationships in data

e Can take advantage of
large amounts of
training data

performance

deep learning

other learning
algorithms

Y

amount of data

17



Open Source Tools and Models

“?‘ PYTHRCH

¥ Microsoft

% dmlc
CNTK 2 Gffe2  mynet

gensim spaCy  theano



DL for Computer Vision

[NVIDIA dev blog]

[Faster R-CNN - Ren 2015]



DL for Natural Language Processing

0 Salit Kulla

Hey, Wynton Marsalis is playing this weekend. Do
you have a preference between Saturday and Sunday?

Translate

-S
Italian Chinese French English - detected ~ ".. English Spanish French ~ m
deep learning *  l'apprentissage en profondeur
W Do <

“ 3

[Google Inbox Smart Reply]
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DL for CV + NLP

q
Is the mustache - b———]
real ? _>_> l g w,

e

|

1 ol W, y
Ll I

| —~ [~ =]

‘ i

[VQA - Mutan 2017]

"man in black shirt is playing "construction worker in orange "two young girls are playing with "boy is doing backflip on
guitar. safety vest is working on road." lego toy." wakeboard."

[Karpathy 2015]
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Neural Networks for Classification

Neural networks are functions with tunable Inputs
parameters O Hidden Layers
* Lots of parameters s -

Outputs

7
|

e XxSe RN

K-Class Classification 01
. f(.; g): RN - (0’1)K / /02
Sample s in dataset S: ~ | <05
2 Ny 06

Expected output: 1 put
« yS€[0,K —1]

,Q\

0\

. AN\N \)“,«" f’ “o « ’: N \ \(/:, 4 %) 4
o -

o
0 -

o

O

. O =

Output is a conditional probability
distribution: MULTILAYER PERCEPTRON (MLP)
« f(x%;0), =P(Y =c|X =x%)
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Artificial Neuron

Hidden Layers

MULTILAYER PERCEPTRON (MLP)

10 os  NEURON

3 AN

Lo w b
1 \ Y
X @_, f(x)
z(x)
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Artificial Neuron

v, [
DD

z(X) =wix+b e.g., [0.01,0.03,0.04]™x[1,2,3]+9
f(x) = g(w'x +b)

X, f(x) input and output

z(X) pre-activation (intermediate results)
w, b weights and bias

g activation function

24



X0

X1

Layer of Neurons

w [
CEGEE

zX) =wix+b
f(x) =gw'x+b)

X, f (x) input and output

z(X) pre-activation (intermediate results)
w, b weights (vector) and bias (scalar)

g activation function

f(x) = g(z(x)) = g(Wx +b)
W, b now matrix and vector

25




One Hidden Layer Network
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One Hidden Layer Network

h —

h L

ZH-1 @ thy,
Zh

z"(x) = W'x + b"
h(x) =g (zh(x)) = g(W"x + b")



One Hidden Layer Network

\
ROk
R=dl
o @» o

h, . X

z"(x) = W'x + b"
h(x) =g (zh(x)) = g(W"x + b")
z°(x) = W°h(x) + b°




One Hidden Layer Network

Zg > § fO
S

21 2 fr-1

z°(x) f(x)

z"(x) = W'x + b"
h(x) =g (zh(x)) = g(W"x + b")

z°(x) = W°h(x) + b°
f(x) = softmax(z°) = softmax(W°h(x) + b°)




One Hidden Layer Network

Zo

T

T N-1

D > 20 8 o
NORNE
>@’ Zg-a| 2 |- Jr-1
-
z°(x) f(x)
o softmax
zh(x) E h(x) z°(X) E f(x)
/\ /\
bh Wh b° o

Computational Graph
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Element-wise activation functions

L5 ! ! T T T L5 ! ! ! ; ; L5 ' ; ' ; T /

4 0.5 F et UL W< W I oo

0.0

—0.5 |-eeeeed 4 05

-1.5 | | 1 1 1 -1.5 | | | 1 1 -1.5 1 1 1 1 1 1 1
-4 -2 0 2 4 -4 -2 0 2 4 220 -15 -10 -05 00 05 10 15 20

sigm(x) relu(z) = max(0, z)

- 14+ e

sigm’(x) = sigm(x)(1 — sigm(x)) tanh’(z) = 1 — tanh(z)? relu’(z) = 1,50

blue: activation function

green: derivative
31



travel time

Activation Functions

PREDICT TRAFFIC JAMS

A LINEAR o ix B \ POLYNOMIAL

travel time

t t ¥ t y == f t t f t >
woo 800 1200 1600 2000 2400 woo 800 12:00 1600 2000 2480

current hour current hour

REGRESSI|ON

What if polynomial regression still could not find a good fit?

e Activation functions
introduce non-linearities

* Linear
e z(x) =wix+b

* Non-linear
* f(x) =g(w'x+D)

e
Ry CRo R

32




Softmax function

» “Any time we wish to represent a probability distribution over a
discrete variable with n possible values, we may use the softmax
function. This can be seen as a generalization of the sigmoid function
which was used to represent a probability distribution over a binary
variable.” Deep Learning

Zo

. Zh ﬂ@ > h i X1
T @ 0 0 \@* kS Jo 1 zxz
wh v - Softmax(x) = ST o . :
' @$ o el i=1 .
b e
1
"

softmax




Softmax Example

e Class 0: [1, O, O] b

. E >y,
e True y for an input x o @ @
. [0, 1, 0] x 2 (x) h(x) ()

» Softmax results scale to probabilities and sum up to 1.0
* [0.09003057 0.66524096 0.24472847]

e*1
* p(Y = c|X = x) = softmax(z(x)), sof tmax() = < ¥
e Might use argmax() to return [0, 1, 0] -> Class 1 =160
e n

https://machinelearningmastery.com/softmax-activation-function-with-
python/#:~:text=The%20softmax%20function%20is%20used%20as%20the%20activation%20function%20in,more% 34
20than%20two%20class%20labels.

Jo

Jr—1

Zo
[ T . Zg o 1 h : o
* Class 1: [0, 1, O] n @ @ 0 \@ 2 el
X . ) LIEL]
e Class 2: [0, 0, 1] |V ] | I ()2




Training the network

* From x = [Xg...X,.1], the network generates [0.09003057 0.66524096
0.24472847]

 What if the true label is [1, O, 0]?

* Adjust 8 = (W"; b"; W°; b°) so that hopefully the next prediction
will be closer to the true label

bo

xo @ N @ L y

-z — >

- 0 0 \@) 28 fo

LW bial | . W

| @’ Zhe1 | = fr-1
) @k




Training the network

* Using the training data, find 8 = (W"; b"; W?; b°) that minimize
some loss function w.r.t the quality of the prediction
* [(f(x*;0),y°)
* We need some way to quantitatively compare the two probability
distributions: [0.09003057 0.66524096 0.24472847] and [1, O, O]

* e.g., using cross entropy to measure the difference between the predicted
distribution to the ground truth label

* The comparison results will give the network some directions to
generate a prediction closer to [1, O, 0]

* by updating 8 = (W"; b"*; W°; b°)

36



Avoid Overfitting

* Typically, minimizing [(f(x°; 8),y®) is

not enough Training Vs. Test Set Error
* Especially with complex models (lots of
parameters) 4 Test Set
e Regularization :
* We might want to also add a E
:

regularization term
* e.g, L2:20(0) = A([IW"[|> + [|W°]|?)

* Recall: & = (W"; b™; W°; b°) Wk

* Dropout .

Model Complexity

 Early stopping

37
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/



Gradient Descent R

10,,0,).,

* |nitialize @ = (Wh;bh;WO;bO) randomly
* For E epochs perform:

* For all samples (s € §)
e Compute gradients from all samples: A = Vg L(0)
* Update parameters: 8 < 6 — nA
* 1 > 0is called the learning rate

* Repeat until the epoch is completed (all of S is covered)

e Stop when reaching criterion:
* e.g., error stops decreasing when computed on validation set




Computing Gradients

A(f(x),y)

* Output Weights:

e Output bias:

OL(f(x).y) * Hidden bias:

* Hidden Weights:

* The network is a composition of

differentiable modules

* Instead of computing the gradients
for each layer individually, we can

apply the “chain rule”

* Easy to calculate with complex
network and loss functions

h

ol(f(x).y)
ob;

ol(f(x).y)
obl

chain-rule
0z 0z Oy v ov
Oz, 4~ Oy dx; “'axi

ov
Oz,

0z
o

ov

5:131-

Vu




o

Backpropagation

X >

softmax

-
>

ZO

FL
7N

A

1
—

VA

f(x)

bO

x)
N\

(0]

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

https://machinelearningmastery.com/difference-between-backpropagation-and-stochastic-gradient-descent/

40




Stochastic Gradient ‘ ==y
Descent with Mini Batch .. .

* |nitialize @ = (Wh;bh;WO;bO) randomly | 4 ,
* For E epochs perform:

* Randomly select a small batch (mini-batch) of samples (B c §)
* Compute gradients: A = VyLg(0)
* Update parameters: 8 < 6 — nA
* 1 > 0is called the learning rate

* Repeat until the epoch is completed (all of S is covered)

e Stop when reaching criterion:
* e.g., error stops decreasing when computed on validation set

Watch me: https://www.youtube.com/watch?v=vMh0zPTOtLI



Initialization
and Learning

Normalize your input

Initialize weights with
random numbers (bias
to 0)

Adjust SGD learning
rate

Momentum

* Accumulate gradients
across successive
updates

Other optimizers

Credits: Alec Radford

\\

-  SGD
- Momentum
e NAG
- Adagrad
Adadelta
Rmsprop

Hrrrrr i




Many Types of Neural Network Architectures

 Graph Neural Networks

* Convolutional Neural Networks
e Recurrent Neural Networks

* Transformer

* We can also mix them!



Graph Neural Networks

road 1 road 2
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~
o
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Time
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Input
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/
r, g ry E
r

Ciprofloxacin 1 Mupirocin

i
Jrs
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©—@O Protein-protein interaction
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Graph Regularization, Graph
convolutions e.g., dropout convolutions
&
%oé
Activation
\ function
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Convolutional Neural Networks

fc_3 fc_ 4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution A K—A
(5x5) kernel Max-Pooling (5 x 5) kernel Max-Pooling (with
valid padding 2x2) valid padding (2x2)

-~/ &\ dropout)

INPUT nlchannels nl channels n2 channels n2 channels ‘ E \‘ 9

(28 x 28 x 1) (24 x24 xnl) (12x12 xnl) (8x8xn2) (4x4xn2) | 4 -

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional- n3 units
neural-networks-the-eli5-way-3bd2b1164a53
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Recurrent Neural Networks

ENCODER

comment\

a0 00

DECODER

allez

vous ™

]

<GO>
( Embedding ]
how are you ?
| I 11 1 | | 11 11 I
time step | 2 3 4 5 6 7

https://towardsdatascience.com/language-translation-with-rnns-d84d43b40571
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Transformer

[ w’1] [w’z] [w’s] w’4] [W's

Embedding ry Y 3
to vocab + T T
softmax
[ Classification Layer: Fully-connected layer + GELU + Norm
A A A h 4
Lo J Lo J (o J [o J [Los
A A A A A
-
Transformer encoder
-
Embedding T T T T T
[ w w2 wi | [ masa | [ ws
\Iw \Ilz VIls VIM \IIS

https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270



Neural Networks & DL Summary

* DL is very versatile and can capture non-linear relationships
* DL can take advantage of large amounts of training data

* Design a DL network include the decisions of network architectures,
loss functions, and regularizer

* Training a DL network concerns initialization (including data
normalization), learning rate, learning algorithms, and batch sizes
(SGD)

* Many open-source tools, books, and tutorials are available online



Convolutional Neural Networks



Image as Functions

[90, 0, 53]

[249, 215, 203]

[213, 60, 67]

https://ai.stanford.edu/~syyeung/cvweb/tutoriall.html
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Image as Functions

https://ai.stanford.edu/~syyeung/cvweb/tutoriall.html
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Image Classification with Dense Layers

* How many parameters
do we need?

* Two hidden layers
e Fully connected

* Assuming a 28 x 28
image, 3 channels (RGB),
2 layers, 1,000 neuron
each

e 28 x28 x3 x 1000 + 1000
x 1000+ 2 x 1000 =
3.3M!

MULTILAYER PERCEPTRON (MLP)

52
https://vas3k.com/blog/machine_learning/



Image Classification with Dense Layers

Inputs

* Spatial structure is not O Hidden layers
used ) = '

 Spatial relations
between pixel values

“flattened” e |

* From 2D pixels to 1D
inpUtS 1 input

* The input image is ] [7
\

MULTILAYER PERCEPTRON (MLP)

53
https://vas3k.com/blog/machine_learning/



Image Filters, Convolution, Kernel

5) detail
*0 (0|0 1 o] (el|e]l
e(0(e]1 |0 — 5 o] (el |e]
e(0|e(0| 0 ol (el |e]

54

https://ai.stanford.edu/~syyeung/cvweb/tutoriall.html



Image Filters, Convolution, Kernel

*0(*0| 0 e0(*0| 0 1 o] (ele]l *0|*0|*0 1 el|el|el
o(0(e]1 |0 + o(0|e]l (0| — 5 ol (el(e1| = |eQ|e2]| Q]| — 5 o] (el (e
e0(«0|*0 °0(*0| 0 o] |e]|e]l *0|*0|*0 o] |e]l|e]

55

https://ai.stanford.edu/~syyeung/cvweb/tutoriall.html



Image Filters, Convolution, Kernel

16 x12

I * Apply a convolution kernel on the image to
generate another image

an BB

5x4

* The output image can have a different size from
the input image, depending on the kernel
sizes/types, stride sizes, and padding methods

Each cell in the output image
summarizes a 3 x 3 area in the
original image

The same summarization
operation for every cell, e.g.,
use the average intensity

56
https://github.com/vdumoulin/conv_arithmetic



Strides

e Strides: increment step size for the convolution operator
* Reduces the size of the output map
e A stride of 2:

57



Padding

* Padding: artificially fill borders of
image

» Useful to keep spatial dimension
constant across filters

e Useful with strides and large
receptive fields

e Usually: fill with Os
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Sizes and Dimensions

* Assuming square input, dimension i x i
* Padding size = p

e Stride size =1

* Kernel size = k

e OQutput dimension=0xo0
o= ((-k)+ 2xp + 1

* Read https://arxiv.org/abs/1603.07285



Sizes and Dimensions

T

Figure 2.1: (No padding, unit strides) Convolving a 3 x 3 kernel over a 4 x 4
input using unit strides (i.e., i =4, k =3, s=1 and p = 0).

https://arxiv.org/abs/1603.07285



Sizes and Dimensions

Figure 2.2: (Arbitrary padding, unit strides) Convolving a 4 x 4 kernel over a
5 X 5 input padded with a 2 x 2 border of zeros using unit strides (i.e., i = 5,
k=4,s=1andp=2).

0o=C(G-k) +2xp+1 .
https://arxiv.org/abs/1603.07285



Sizes and Dimensions

Figure 2.3: (Half padding, unit strides) Convolving a 3 x 3 kernel over a 5 x 5
input using half padding and unit strides (i.e., i =5, k=3, s=1and p=1).

o =({-k)+ 2xp + L,k=2xp+1 63
https://arxiv.org/abs/1603.07285



Sizes and Dimensions

Figure 2.4: (Full padding, unit strides) Convolving a 3 x 3 kernel over a 5 X 5
input using full padding and unit strides (i.e., i =5, k =3, s =1 and p = 2).

o =((-k)+2xp + Lp=k-1 .
https://arxiv.org/abs/1603.07285



Convolution in Neural Networks

* x is a 3X3 chunk (dark area) of image: im, dimensions 5x5
the image (b|ue array) Kernel: k, dimensions 3x3

e Kernel is the subscripts in the
dark area

* A neuron is parameterized with
the kernel

e 3X3 weight matrix w

(k * i;n) (x,y)

2
= Zk(n,m).im(x+n—1,y+m - 1)
m=0 65
https://arxiv.org/abs/1603.07285 n=0



Convolution in Neural Networks

* x is a 3X3 chunk (dark area) of image: im, dimensions 5x
the image (blue array) Kernel: k, dimensions 3x3

* Kernel is the subscripts in the
dark area

* A neuron is parameterized with
the kernel

e 3X3 weight matrix w

T

* The activation obtained by sliding (k * im) (x, ¥) wox
the kernel window to compute: 2

z(x) = relu(wa +b) = E Z k(n,m).im(x+n —1,y+m — 1)

m=0

66
https://arxiv.org/abs/1603.07285



MOtivatiOnS Kernel dimensions + 1

* Local connectivity

* A neuron depends only on a few local input
neurons

* Translation invariance

Convolutional layer

 Comparison to Fully connected
* Parameter sharing, reduce overfitting

* Make use of spatial structure: strong prior for
vision!

#current layer neurons x #previous layer
neurons + #current layer neurons

1D Convolution View:
How many parameters
do we need?

Fully connected (dense layer)



Multiple Channels

* Colored image = tensor of shape (height, width, channels)

e Convolutions are usually computed for each channel separately and

summed:

55555

2
(k * imcolor) — Z k€ % im€
c=0



Multiple Convolutions

* Multiple kernel sizes aka receptive fields (usually 1, 3, 5, 7, 11)
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Multiple Convolutions

* Multiple kernel sizes aka receptive fields (usually 1, 3, 5, 7, 11)
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Multiple Convolutions

* Multiple kernel sizes aka receptive fields (usually 1, 3, 5, 7, 11)
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Multiple Convolutions

* Multiple kernel sizes aka receptive fields (usually 1, 3, 5, 7, 11)
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Pooling

* Spatial dimension reduction

* Local invariance
* No parameters: max or average of 2x2 units

111 2 /

4
max pool with 2x2 filters 14x14x3
e 7/ | 8 and stride 2 byl 8
3 | 2 . ] 3
1 | 2

no parameters!
73
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Put it all together

Input

Conv blocks

e Convolution + activation (relu)
e Convolution + activation (relu)
* Maxpooling 2x2

Output

* Fully connected layers

e Softmax



AlexNet

Max 128 Max
pooling pooling

* First conv layer: kernel 11x11x3x96 stride 4
* Kernel shape: (11,11,3,96)
* QOutput shape: (55,55,96)
* Number of parameters: 34,944
* Equivalent MLP parameters: 43.7 x 1e9

Simplified version of Krizhevsky, Alex, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

INPUT:
CONV1:

MAX POOL1:

CONV2:

MAX POOL2:

CONV3:
CONV4:
CONV5:

MAX POOL3:

FCé6:
FC7:
FC8:

128 2048 2048
dense dense
1000
128 Max L_| L
pooling 2048 2048

[227x227x3]
[55x55x96] 96 11x11 filters
[27x27x96] 3x3  filters
[27x27x256] 256 5x5 filters
[13x13x256] 3x3  filters
[13x13x384] 384 3x3 filters
[13x13x384] 384 3x3  filters
[13x13x256] 256 3x3  filters
[6x6x256] 3x3  filters
[4096] 4096 neurons
[4096] 4096 neurons
[1000]

at
at
at
at
at
at
at
at

stride
stride
stride
stride
stride
stride
stride
stride 2

RRRERNRLRND

- e e

1000 neurons (softmax logits)
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pad 0
pad 2
pad 1

pad 1
pad 1



Hierarchical Representation

Low-Level
Feature

\ 4

Mid-Level
Feature

\ 4

High-Level
Feature

v

Trainable
Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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AlexNet

* One of the first deep convolutional networks to achieve considerable
accuracy on the 2012 ImageNet LSVRC-2012 challenge
* 84.7% vs 73.8% (second best)

* Data augmentation and dropout layers to reduce overfitting

* Use RelLu to avoid the vanishing gradient problem



Vanishing gradient problem

* Recall that the optimization process is based on backpropagation of gradient computed with the

loss function

* When the gradients are already small, the chain rule makes the gradients of the earlier layers
even smaller (e.g., decreases exponentially the number of layers)

* Earlier layers are difficult to train — weights do not change due to the small gradients

78

1.5 1.5 1.5 ;
N O T N N . N O T N N, ol /
0.0 0.0 0.0 ‘ : S S R
s osh sl Why Relu can help?
- blue: activation function
s ” = 0 2 2 1e ” -2 0 2 120 —1i‘5 Do —oi"s 00 o.is 1o 15 2.0
: 1 e? — 1
sigm(z) = e tanh(z) = o relu(xz) = max(0, x)
sigm’(z) = sigm(z)(1 — sigm(z)) tanh’(z) = 1 — tanh(z)? relu’(z) = 1,50



Let’s go deeper: VGG-16

* More layers than AlexNet

224x224>;3 224 X224 X 64
* 138m vs 62m parameters '

 Effectively use fixed size, small
kernels to replace larger,
variable size kernels

112 x(112x 128

X 56 X 256
28><28><51214 14 5172><7><512
Tan 1x1x4096 1x1x1000
| — ——— — —

 Building blocks:
e Conv, Conv, Max Pooling or

e Conv, Conv, Conv, Max Pooling

@ convolution+ReLU
max pooling

ﬁg fully connected+ReLU

@ softmax

138 million parameters

79
Simonyan, Karen, and Zisserman. "Very deep convolutional networks for large-scale image recognition." (2014)



Let’s go wider: GoogleNet Inception

e Capture global (semantic)

information with larger kernel Fier
concatenation
e Capture local (spatial) o=
info rm ation With Sma“er kernel 1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

* Use multiple variable size kernels
in the same layer
* Fewer layers, easier to train

« Still capture both global and local (a) Inception module, naive version
information

Previous layer

1 1
A gy 0
Py Egﬂigﬂﬁgﬂggﬁﬁgggggﬂﬁ*'t
HHHE Egﬂggggggg ELE Eg

H H g'




1D convolution in GoogleNet

e Reduce the number of channels

* Summed
* Selectively squeeze information [ oo |
from mU|tip|e Channels in the et - B 3x3 convolutions 5x5 convolutions 1x1 convolutions
previous layer to 1 channel \; — — ;
* Like dimension reductions N X1 convalutons | | 11 convoluons max pocing

—~— . - —
..} —

Previous layer

* Allow efficient use of multiple
kernels

https://andre-ye.medium.com/the-clever-trick-behind-googles-inception-the-1-1-
convolution-58815b20113
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VGG-19 34-layer plain 34-layer residual

image image image
N d in?
[ 33comes |
Ca We go eeper agal L] pool, /2
output
3x3 conv, 128 7x7 conv, 64, /2| [ 77conv,64,2 |
v v v
gt pool, /2 pool, /2 pool, /2
size: 56 ¥ \

[ 33conv,256 | [ 33conves | [ 33conve4 |
|m'v,T| [[3@cwe | 33 conv, 64
[T3a oo!v, 36 | [T3a a;w, 6 | [ 3a :«;nv, 64
* More layers, deeper models =
3:3 conv, 64 3x3 conv, 64
¥y ¥
[ 33conv 4| [ 33conv 68 |
° 34’ 50I 101’ 152 |ayers e pool, /2 [[33conv 1282 ] [ hs:amm}- '''''
. . . . sze:28 M 3G conv, 512 | [ 3Gcnv128 | [8emis ] Y
» Skipped connections pass information across layers Comewm ] [wewm ] [wewn
[ 33conv,52 | [ 33conv,128 | 3x3 conv, 128
* Mitigate (but not solve) the vanishing gradient [ogewss ] [(wmew ] [
33 conv, 128 343 conv, 128
problem [ 3x3m;v,]2ﬂ ] [ 3x3m3v,1zs ]
[ 33,128 | [ 33conv,128 |
G pool, /2 [(3a mnvv, 236,72 [Goomw2% Ill -----
X o 33w | [ mm!v,zss ] [ Mm!v,lss ] ...... '
Yy [ 33convs52 | [ 3a mzv, 26 | [ 3a miv, 15;"
We|ght Iayer [ 3@z | [ 33conv,256 | 3x3 conv, 256
f I [ 33512 ] [ 3a w;v, 26 | [ 3a3conv, 256
(X) relu 33 conv, 256 33 conv, 256
h" I X [ Mm;v,lss | [ . ]
weight layer : - o .
= identity e
[ 33conv,256 | [ 33conv,256 |
F(x) +x o) | MD
[ 33conv,256 | [ 33conv,256 |
. . . . ot pool, /2 [Caeom,s12,2 | Rawsmr |,
Figure 2. Residual learning: a building block. Comsn ] () .
[ 33conv,512 | [ 33conv, 512
[ 33convs12 | [ 33 cony, 512
[ sam;v,su | [
33 conv, 512 3:3 conv, 512
bl fca0% avg pool avg pool

He, Kaiming, et al. "Deep residual learning for image recognition." CVPR. 2016.

[ fc 4096 | [ fc 1000 | fc 1000 |




Residual Connections

e Also called the skipped ) C . ! Residul
or skip connections : B

: ! .
* Used in many different ] Layer
types of neural networks ] : . : !
to facilitate training ' | ' dentlty
(e.g., mitigate the vanish g v L @b :
gradient problem) Ay
Fix) : P :
: v .
" Fx) +x :

Traditional Feedforward

without Residual Connection With Residual Connection
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https://towardsdatascience.com/what-is-residual-connection-efb07cab0d55



Residual Connections

* As ensembles of shallow
neural networks

P T e
m €
-
m <
-

* Empirically, residual
connections often help

ol ol
-
|
N
)
N
)

generate better models e D P
and results, e.g., see Ej Ej
H H
DenseNet - s
™ e
X3 = H(x2) + x2

H(G(x1) + x1) + G(x1) + x1
H(G(F(xo) + xo) + F(xe) + Xo) + G(F(xo) + xo) + F(xo0) + Xxo
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https://towardsdatascience.com/what-is-residual-connection-efb07cab0d55



ImageNet experiments
‘152 Iayers’

28.2

3.57

ILSVRC'15
ResNet

22 Iayers 19 Iayers

ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

from Kaiming He slides "Deep residual learning for image recognition." ICML. 2016.
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AlexNet, VGG, Inception, ResNet

* FLOP = floating point operations (required for a forward pass)
* e.g., training AlexNet would take similar time as training Inception

Comparison
Network Year Salient Feature topb accuracy |Parameters| FLOP
AlexNet 2012 Deeper 84.70% 62M 1.5B
VGGNet 2014 Fixed-size kernels 92.30% 138M 19.6B
Inception 2014 Wider - Parallel kernels 93.30% 6.4M 2B
ResNet-152 2015 Shortcut connections 95.51% 60.3M 11B

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96



ImageNet ImageNet-Real. [0]

Method # Params Extra Data Top-1 Top-5 Precision@ 1
St a t e Of ResNet-50 [24] 26M - 760 93.0 82.94
ResNet-152 [24] 60M — 77.8 93.8 84.79
DenseNet-264 [2¢] 34M - 77.9 93.9 —
t h e A rt Inception-v3 [62] 24M - 78.8 94.4 83.58
Xception [ 1] 23M — 79.0 94.5 —
Inception-v4 [61] 48M - 80.0 95.0 -
Inception-resnet-v2 [61] 56M — 80.1 95.1 —
ResNeXt-101 [7¥] 84M - 80.9 95.6 85.18
PolyNet [£7] 92M - 81.3 95.8 —
SENet [27] 146M — 82.7 96.2 -
NASNet-A [90] 89M - 82.7 96.2 82.56
AmoebaNet-A [57] 87™M — 82.8 96.1 —
PNASNet [39] 86M - 82.9 96.2 -
AmoebaNet-C + AutoAugment [ ! 2] 155M — 83.5 96.5 —
GPipe [29] 557TM - 84.3 97.0 -
EfficientNet-B7 [63] 66M — 85.0 97.2 —
EfficientNet-B7 + FixRes [ 70] 66M — 85.3 97.4 —
EfficientNet-L2 [63] 480M - 855 97.5 i
ResNet-50 Billion-scale SSL [79] 26M 3.5B labeled Instagram  81.2 96.0 =
ResNeXt-101 Billion-scale SSL [79] 193M 3.5B labeled Instagram  84.8 - -
ResNeXt-101 WSL [42] 829M 3.5B labeled Instagram 85.4 97.6 88.19
FixRes ResNeXt-101 WSL [6Y] 829M 3.5B labeled Instagram 86.4 98.0 89.73
Big Transfer (BiT-L) [33] 928M 300M labeled JFT 87.5 98.5 90.54
Noisy Student (EfficientNet-L2) [77] 480M 300M unlabeled JFT 88.4 98.7 90.55
Noisy Student + FixRes [70)] 480M 300M unlabeled JFT  88.5 98.7 —
Vision Transformer (ViT-H) [14] 632M 300M labeled JFT 88.55 — 90.72
EfficientNet-L2-NoisyStudent + SAM [ 6] 480M 300M unlabeled JFT  88.6 98.6 -
Meta Pseudo Labels, Hieu Pham et al. Meta Pseudo Labels (Efﬁc%entNet-B6-Wide) 390M 300M unlabeled JFT 90.0 98.7 91.12
Meta Pseudo Labels (EfficientNet-L2) 480M 300M unlabeled JFT  90.2 98.8 91.02

(Jan 2021)




Image Classification on ImageNet

Leaderboard Dataset
View Top 1 Accuracy v | by Date v for All models v
100 =
Meta Pseudo Labels (EfficientNet-L2)
%0 FixResNeXt-101 32x48d
PNASNet 58— - %0
. | tion.\V3 ResNeXt-101 64x4
nceptiongv.
O 80
oS Inception VZ/
« SPPNetd——0—
[v]
S.{ 70 Five Base + Five HiRes
— AlexNet
[~
© 60
SIFT +-FV3
so &
40
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Other models -e- State-of-the-art models
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https://paperswithcode.com/sota/image-classification-on-imagenet



Pre-trained Models

* Training a model on ImageNet (14m+ annotated images) from scratch takes days or weeks.

* Many models trained on ImageNet and their weights are publicly available

&ﬂ Iﬁ ot ﬂ

placental — carnivore — canine — dog —>work|ngdog—> husky

vehicle — craft — watercraft — sailingvessel —  sailboat —— trimaran

89



ImageNet & Pre-trained Models

* Many models trained on ImageNet and their weights are publicly
available

* Transfer learning

* Use pre-trained weights, remove last layers to compute representations of
images

* Train a classification model from these features on a new classification task
* The network is used as a generic feature extractor
» Better than handcrafted feature extraction on natural images

90



Fine-tuning Pre-trained Models

* Fine-tuning
* Retraining the (some) parameters of the network (given enough data)
* Truncate the last layer(s) of the pre-trained network
* Freeze the remaining layers weights
* Add a (linear) classifier on top and train it for a few epochs
* Then fine-tune the whole network or the few deepest layers
e Use a smaller learning rate when fine tuning

91



PyTorch Tutorial

* Finetuning the convnet: initialize
the network with a pretrained
network. Rest of the training looks
as usual.

ConvNet as fixed feature
extractor: freeze the weights for
all of the network except that of
the final fully connected layer.
This last fully connected layer is
replaced with a new one with
random weights and only this
layer is trained.

https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.ht
https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-

image-classification-localization-detection-e39402bfa5d8
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Fine-tuning Example

* Semantic segmentation results
(overlaying with the test map)
using pre-trained PSPNet with
large size training data and
trained from the shallow (top
left), middle (top right), and
deep layers (bottom left) (FP in
red and TP in blue)




Bias and Ethical Concerns

* Neural networks are great approximators
* You get what you trained with

* Training data can have bias
* Model can have bias

* Applications can discriminate against certain populations

* “In July 2020, the National Institute of Standards and Technology (NIST)
conducted independent assessments to confirm these results. It reported that
facial recognition technologies for 189 algorithms showed racial bias toward
women of color. NIST also concluded that even the best facial recognition
algorithms studied couldn’t correctly identify a mask-wearing person nearly
50% of the time.”

https://learn.g2.com/ethics-of-facial-recognition



CNN Summary

* A powerful neural network architecture for many tasks, especially
computer vision

* Reduce the number of parameters (parameter sharing)
e Capture spatial interactions in a neighborhood (i.e., the kernel size)

e Capture consistent spatial interactions across the input space (e.g.,
the input image) — could be a limitation

* Many types of CNN architectures and pretrained models are available
* Models can have bias and ethical concerns should be addressed
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