
Capturing Spatial Dependencies
with Deep Neural Networks I

Yao-Yi Chiang
Computer Science and Engineering

University of Minnesota
yaoyi@umn.edu

1
CC-BY
Attribution

What have we
covered so
far?
• Clustering
• Dimension

Reduction
• Random Forest

• Classification
• Regression

2
https://vas3k.com/blog/machine_learning/

3
https://vas3k.com/blog/machine_learning/

What have we
covered so
far?
• Classical ML
• Ensembles

Overhead Imagery Understanding Tasks

4Thorsten Hoeser and Claudia Kuenzer. 2020. Object detection and image segmentation with deep learning on earth observation
data: A review-part i: Evolution and recent trends. Remote Sensing. Retrieved from https://www.mdpi.com/723500

https://www.mdpi.com/723500

Object Detection & Recognition in 1999

• SIFT is one of most
popular image
feature extraction
and description
algorithms
• SIFT extracts feature

points and describe
them with a scale,
illumination, and
rotational invariant
descriptor

5

SIFT (Scale Invariant Feature Transform)

https://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O

Object Detection & Recognition in 1999

6

SIFT (Scale Invariant Feature Transform)

https://iq.opengenus.org/scale-invariant-feature-transform/

Object Detection & Recognition in 1999

7

SIFT (Scale Invariant Feature Transform)

https://iq.opengenus.org/scale-invariant-feature-transform/

Object Detection & Recognition in 1999

8
https://iq.opengenus.org/scale-invariant-feature-transform/

SIFT (Scale Invariant Feature Transform)

Object Detection & Recognition in 1999

9

SIFT (Scale Invariant Feature Transform)

https://iq.opengenus.org/scale-invariant-feature-transform/

Object Detection & Recognition in 1999

10

SIFT (Scale Invariant Feature Transform)

https://iq.opengenus.org/scale-invariant-feature-transform/

Map Processing

• The small image on the
right: hotel sample
• The small white circles on

the maps: SURF descriptors
• The yellow lines connect

matches between the SURF
descriptors of the map area
and the sample.

11Using Historical Maps in Scientific Studies: Applications, Challenges, and Best Practices. Chiang, Y.; Duan, W.; Leyk, S.; Uhl, J. H; and Knoblock, C.
A of SpringerBriefs in GeographySpringer International Publishing, 2020.

Handcrafted Image Features

• Pros
• Simple, easy to implement
• Do not require significant computational power
• Somehow explainable results

• Cons
• Not very robust (e.g., objects need to be very similar for a match)
• Limited computer vision applications

12

13
https://vas3k.com/blog/machine_learning/

What have we
covered so
far?
• Classical ML
• Ensembles

Neural Networks and Deep
Learning
A short introduction

14

Deep Neural Networks

• Neural networks with
lots of “neurons” and
layers

15

Deep Neural Networks

• Neural networks with
lots of “neurons” and
layers
• Flexible network

modules
• Can capture non-linear

relationships in data

16
https://vas3k.com/blog/machine_learning/

Deep Neural Networks

• Neural networks with
lots of “neurons” and
layers
• Flexible network

modules
• Can capture non-linear

relationships in data
• Can take advantage of

large amounts of
training data

17

Open Source Tools and Models

18

DL for Computer Vision

DL for Natural Language Processing

20

DL for CV + NLP

21

Neural Networks for Classification

• Neural networks are functions with tunable
parameters
• Lots of parameters

• K-Class Classification
• 𝐟(⋅; 𝜃): ℝ! → (0,1)"

• Sample 𝑠 in dataset 𝑆:
• 𝐱# ∈ ℝ!

• Expected output:
• 𝑦# ∈ 0, 𝐾 − 1

• Output is a conditional probability
distribution:
• 𝐟(𝐱#; 𝜃)$ = 𝑃(𝑌 = 𝑐|𝑋 = 𝐱#)

22

Artificial Neuron

23

Artificial Neuron

24

𝑧 𝐱 = 𝐰!𝐱 + 𝑏
𝑓 𝐱 = 𝑔 𝐰!𝐱 + 𝑏

𝐱, 𝑓 𝐱 input and output
𝑧(𝐱) pre-activation (intermediate results)
𝐰, 𝑏 weights and bias
𝑔 activation function

e.g., [0.01,0.03,0.04]Tx[1,2,3]+9

Layer of Neurons

25

𝑧 𝐱 = 𝐰!𝐱 + 𝑏
𝑓 𝐱 = 𝑔 𝐰!𝐱 + 𝑏

𝐱, 𝑓 𝐱 input and output
𝑧(𝐱) pre-activation (intermediate results)
𝐰, 𝑏 weights (vector) and bias (scalar)
𝑔 activation function

𝐟 𝐱 = 𝑔 z(x) = 𝑔 𝐖𝐱 + 𝐛
𝐖, 𝐛 now matrix and vector

One Hidden Layer Network

26

𝐳" 𝐱 = 𝐖"𝐱 + 𝐛"

One Hidden Layer Network

27

𝐳" 𝐱 = 𝐖"𝐱 + 𝐛"

𝐡 𝐱 = 𝑔 𝐳" 𝐱 = 𝑔 𝐖"𝐱 + 𝐛"

One Hidden Layer Network

28

𝐳" 𝐱 = 𝐖"𝐱 + 𝐛"

𝐡 𝐱 = 𝑔 𝐳" 𝐱 = 𝑔 𝐖"𝐱 + 𝐛"

𝐳# 𝐱 = 𝐖#𝐡 𝐱 + 𝐛#

One Hidden Layer Network

29

𝐳" 𝐱 = 𝐖"𝐱 + 𝐛"

𝐡 𝐱 = 𝑔 𝐳" 𝐱 = 𝑔 𝐖"𝐱 + 𝐛"

𝐳# 𝐱 = 𝐖#𝐡 𝐱 + 𝐛#

𝐟 𝐱 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐳# = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐖#𝐡 𝐱 + 𝐛#

One Hidden Layer Network

30

Computational Graph

Element-wise activation functions

31

blue: activation function
green: derivative

Activation Functions

32

What if polynomial regression still could not find a good fit?

• Activation functions
introduce non-linearities
• Linear

• 𝑧 𝐱 = 𝐰9𝐱 + 𝑏

• Non-linear
• 𝑓 𝐱 = 𝑔 𝐰9𝐱 + 𝑏

Softmax function

• “Any time we wish to represent a probability distribution over a
discrete variable with n possible values, we may use the softmax
function. This can be seen as a generalization of the sigmoid function
which was used to represent a probability distribution over a binary
variable.” Deep Learning

33

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐱 =
1

∑$%&
' 𝑒(!

⋅

𝑒("
𝑒(#
⋮
𝑒($

Softmax Example

• Class 0: [1, 0, 0]
• Class 1: [0, 1, 0]
• Class 2: [0, 0, 1]
• True y for an input x

• [0, 1, 0]

• Softmax results scale to probabilities and sum up to 1.0
• [0.09003057 0.66524096 0.24472847]
• 𝑝(𝑌 = 𝑐|𝑋 = 𝐱) = so[max(𝐳(𝐱))?
• Might use argmax() to return [0, 1, 0] -> Class 1

34

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐱 =
1

∑$%&
' 𝑒(!

⋅

𝑒("
𝑒(#
⋮
𝑒($

https://machinelearningmastery.com/softmax-activation-function-with-
python/#:~:text=The%20softmax%20function%20is%20used%20as%20the%20activation%20function%20in,more%
20than%20two%20class%20labels.

Training the network

• From x = [x0…xn-1], the network generates [0.09003057 0.66524096
0.24472847]
• What if the true label is [1, 0, 0]?

• Adjust 𝜃 = (𝐖8; 𝐛8;𝐖9; 𝐛9) so that hopefully the next prediction
will be closer to the true label

35

Training the network

• Using the training data, find 𝜃 = (𝐖8; 𝐛8;𝐖9; 𝐛9) that minimize
some loss function w.r.t the quality of the prediction
• 𝑙 𝐟 𝐱@; 𝜃 , 𝑦@

• We need some way to quantitatively compare the two probability
distributions: [0.09003057 0.66524096 0.24472847] and [1, 0, 0]
• e.g., using cross entropy to measure the difference between the predicted

distribution to the ground truth label

• The comparison results will give the network some directions to
generate a prediction closer to [1, 0, 0]
• by updating 𝜃 = (𝐖A; 𝐛A;𝐖B; 𝐛B)

36

Avoid Overfitting

• Typically, minimizing 𝑙 𝐟 𝐱:; 𝜃 , 𝑦: is
not enough
• Especially with complex models (lots of

parameters)
• Regularization

• We might want to also add a
regularization term
• e.g., L2: 𝜆Ω(𝜃) = 𝜆(||𝑊%||& + ||𝑊'||&)
• Recall: 𝜃 = (𝐖%; 𝐛%;𝐖'; 𝐛')

• Dropout
• Early stopping

37
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

Gradient Descent

• Initialize 𝜃 = (𝐖8; 𝐛8;𝐖9; 𝐛9) randomly
• For 𝐸 epochs perform:
• For all samples (𝑠 ⊂ 𝑆)

• Compute gradients from all samples: Δ = ∇C𝐿@(𝜃)
• Update parameters: 𝜃 ← 𝜃 − 𝜂Δ
• 𝜂 > 0 is called the learning rate

• Repeat until the epoch is completed (all of 𝑆 is covered)
• Stop when reaching criterion:

• e.g., error stops decreasing when computed on validation set

38

Computing Gradients

• Output Weights: AB(𝐟(𝐱),C)
AD!,#

$

• Hidden Weights: AB(𝐟(𝐱),C)
AD!,#

%

• The network is a composition of
differentiable modules

• Instead of computing the gradients
for each layer individually, we can
apply the “chain rule”

• Easy to calculate with complex
network and loss functions

39

• Output bias: AB(𝐟(𝐱),C)
AE!

$

• Hidden bias: AB(𝐟(𝐱),C)
AE!

%

Backpropagation

40
https://machinelearningmastery.com/difference-between-backpropagation-and-stochastic-gradient-descent/
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

Stochastic Gradient
Descent with Mini Batch

• Initialize 𝜃 = (𝐖8; 𝐛8;𝐖9; 𝐛9) randomly
• For 𝐸 epochs perform:
• Randomly select a small batch (mini-batch) of samples (𝐵 ⊂ 𝑆)

• Compute gradients: Δ = ∇C𝐿D(𝜃)
• Update parameters: 𝜃 ← 𝜃 − 𝜂Δ
• 𝜂 > 0 is called the learning rate

• Repeat until the epoch is completed (all of 𝑆 is covered)
• Stop when reaching criterion:

• e.g., error stops decreasing when computed on validation set

41
Watch me: https://www.youtube.com/watch?v=vMh0zPT0tLI

Initialization
and Learning
• Normalize your input
• Initialize weights with

random numbers (bias
to 0)

• Adjust SGD learning
rate

• Momentum
• Accumulate gradients

across successive
updates

• Other optimizers

42
Credits: Alec Radford

Many Types of Neural Network Architectures

• Graph Neural Networks
• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformer
• We can also mix them!

43

Graph Neural Networks

44
http://snap.stanford.edu/decagon/
https://giters.com/liyaguang/DCRNN

Convolutional Neural Networks

45https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53

Recurrent Neural Networks

46
https://towardsdatascience.com/language-translation-with-rnns-d84d43b40571

Transformer

47
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270

Neural Networks & DL Summary

• DL is very versatile and can capture non-linear relationships
• DL can take advantage of large amounts of training data
• Design a DL network include the decisions of network architectures,

loss functions, and regularizer
• Training a DL network concerns initialization (including data

normalization), learning rate, learning algorithms, and batch sizes
(SGD)
• Many open-source tools, books, and tutorials are available online

48

Convolutional Neural Networks
A short introduction

49

Image as Functions

50
https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html

Image as Functions

51
https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html

Image Classification with Dense Layers

• How many parameters
do we need?
• Two hidden layers
• Fully connected
• Assuming a 28 x 28

image, 3 channels (RGB),
2 layers, 1,000 neuron
each
• 28 x 28 x 3 x 1000 + 1000

x 1000 + 2 x 1000 =
3.3M!

52
https://vas3k.com/blog/machine_learning/

Image Classification with Dense Layers

• Spatial structure is not
used
• Spatial relations

between pixel values

• The input image is
“flattened”
• From 2D pixels to 1D

inputs

53
https://vas3k.com/blog/machine_learning/

Image Filters, Convolution, Kernel

54
https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html

Image Filters, Convolution, Kernel

55
https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html

Image Filters, Convolution, Kernel

• Apply a convolution kernel on the image to
generate another image

• The output image can have a different size from
the input image, depending on the kernel
sizes/types, stride sizes, and padding methods

56

• Each cell in the output image
summarizes a 3 x 3 area in the
original image

• The same summarization
operation for every cell, e.g.,
use the average intensity

16 x 12 5 x 4
https://github.com/vdumoulin/conv_arithmetic

Strides

• Strides: increment step size for the convolution operator
• Reduces the size of the output map
• A stride of 2:

57

Padding

• Padding: artificially fill borders of
image
• Useful to keep spatial dimension

constant across filters
• Useful with strides and large

receptive fields
• Usually: fill with 0s

58

Padding

59

Sizes and Dimensions

• Assuming square input, dimension i x i
• Padding size = p
• Stride size = 1
• Kernel size = k
• Output dimension = o x o

𝑜 = 𝑖 – 𝑘 + 2× 𝑝 + 1
• Read https://arxiv.org/abs/1603.07285

60

Sizes and Dimensions

61
https://arxiv.org/abs/1603.07285

𝑜 = 𝑖 – 𝑘 + 2 × 𝑝 + 1

Sizes and Dimensions

62
https://arxiv.org/abs/1603.07285

𝑜 = 𝑖 – 𝑘 + 2 × 𝑝 + 1

Sizes and Dimensions

63
https://arxiv.org/abs/1603.07285

𝑜 = 𝑖 – 𝑘 + 2×𝑝 + 1; 𝑘 = 2 ×𝑝 + 1

Sizes and Dimensions

64
https://arxiv.org/abs/1603.07285

𝑜 = 𝑖 – 𝑘 + 2×𝑝 + 1; 𝑝 = 𝑘 − 1

Convolution in Neural Networks

• 𝑥 is a 3×3 chunk (dark area) of
the image (blue array)
• Kernel is the subscripts in the

dark area
• A neuron is parameterized with

the kernel
• 3×3 weight matrix 𝐰

65
https://arxiv.org/abs/1603.07285

𝑘 ⋆ 𝑖𝑚 (𝑥, 𝑦)

=O

'%)

*

P
+%)

*

𝑘(𝑛,𝑚). 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

Image: im, dimensions 5x5
Kernel: k, dimensions 3x3

Convolution in Neural Networks

• 𝑥 is a 3×3 chunk (dark area) of
the image (blue array)
• Kernel is the subscripts in the

dark area
• A neuron is parameterized with

the kernel
• 3×3 weight matrix 𝐰

• The activation obtained by sliding
the kernel window to compute:

𝑧(𝑥) = 𝑟𝑒𝑙𝑢(𝐰9𝑥 + 𝑏)

66
https://arxiv.org/abs/1603.07285

𝐰!𝑥
𝑘 ⋆ 𝑖𝑚 (𝑥, 𝑦)

=O

'%)

*

P
+%)

*

𝑘(𝑛,𝑚). 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

Image: im, dimensions 5x5
Kernel: k, dimensions 3x3

Motivations

• Local connectivity
• A neuron depends only on a few local input

neurons
• Translation invariance

• Comparison to Fully connected
• Parameter sharing, reduce overfitting
• Make use of spatial structure: strong prior for

vision!

67

…

Fully connected (dense layer)

Convolutional layer

…
?

#current layer neurons x #previous layer
neurons + #current layer neurons

Kernel dimensions + 1

1D Convolution View:
How many parameters
do we need?

Multiple Channels

• Colored image = tensor of shape (height, width, channels)
• Convolutions are usually computed for each channel separately and

summed:

68

𝑘 ⋆ 𝑖𝑚,#-#. = P
,%)

*

𝑘, ⋆ 𝑖𝑚,

Multiple Convolutions

• Multiple kernel sizes aka receptive fields (usually 1, 3, 5, 7, 11)

69

Multiple Convolutions

• Multiple kernel sizes aka receptive fields (usually 1, 3, 5, 7, 11)

70

Multiple Convolutions

• Multiple kernel sizes aka receptive fields (usually 1, 3, 5, 7, 11)

71

Multiple Convolutions

• Multiple kernel sizes aka receptive fields (usually 1, 3, 5, 7, 11)

72

Pooling

• Spatial dimension reduction
• Local invariance
• No parameters: max or average of 2x2 units

73
http://cs231n.github.io/convolutional-networks

Put it all together

Input
Conv blocks
• Convolution + activation (relu)
• Convolution + activation (relu)
• ...
• Maxpooling 2x2
Output
• Fully connected layers
• Softmax

74

AlexNet

• First conv layer: kernel 11x11x3x96 stride 4
• Kernel shape: (11,11,3,96)
• Output shape: (55,55,96)
• Number of parameters: 34,944
• Equivalent MLP parameters: 43.7 x 1e9

75
Simplified version of Krizhevsky, Alex, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

Hierarchical Representation

76

AlexNet

• One of the first deep convolutional networks to achieve considerable
accuracy on the 2012 ImageNet LSVRC-2012 challenge
• 84.7% vs 73.8% (second best)

• Data augmentation and dropout layers to reduce overfitting
• Use ReLu to avoid the vanishing gradient problem

77

Vanishing gradient problem

• Recall that the optimization process is based on backpropagation of gradient computed with the
loss function

• When the gradients are already small, the chain rule makes the gradients of the earlier layers
even smaller (e.g., decreases exponentially the number of layers)

• Earlier layers are difficult to train – weights do not change due to the small gradients

78

Why Relu can help?
blue: activation function
green: derivative

Let’s go deeper: VGG-16

• More layers than AlexNet
• 138m vs 62m parameters

• Effectively use fixed size, small
kernels to replace larger,
variable size kernels

• Building blocks:
• Conv, Conv, Max Pooling or
• Conv, Conv, Conv, Max Pooling

79
Simonyan, Karen, and Zisserman. "Very deep convolutional networks for large-scale image recognition." (2014)

138 million parameters

Let’s go wider: GoogleNet Inception

• Capture global (semantic)
information with larger kernel
• Capture local (spatial)

information with smaller kernel
• Use multiple variable size kernels

in the same layer
• Fewer layers, easier to train
• Still capture both global and local

information

80

1D convolution in GoogleNet

• Reduce the number of channels
• Summed

• Selectively squeeze information
from multiple channels in the
previous layer to 1 channel
• Like dimension reductions
• Allow efficient use of multiple

kernels

81https://andre-ye.medium.com/the-clever-trick-behind-googles-inception-the-1-1-
convolution-58815b20113

Can we go deeper again?
ResNet

• More layers, deeper models
• 34, 50, 101, 152 layers

• Skipped connections pass information across layers
• Mitigate (but not solve) the vanishing gradient

problem

82
He, Kaiming, et al. "Deep residual learning for image recognition." CVPR. 2016.

Residual Connections

• Also called the skipped
or skip connections
• Used in many different

types of neural networks
to facilitate training
(e.g., mitigate the vanish
gradient problem)

83
https://towardsdatascience.com/what-is-residual-connection-efb07cab0d55

Residual Connections

• As ensembles of shallow
neural networks
• Empirically, residual

connections often help
generate better models
and results, e.g., see
DenseNet

84
https://towardsdatascience.com/what-is-residual-connection-efb07cab0d55

85
from Kaiming He slides "Deep residual learning for image recognition." ICML. 2016.

AlexNet, VGG, Inception, ResNet

• FLOP = floating point operations (required for a forward pass)
• e.g., training AlexNet would take similar time as training Inception

86
https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96

State of
the Art

87Meta Pseudo Labels, Hieu Pham et al.
(Jan 2021)

State of the Art

88
https://paperswithcode.com/sota/image-classification-on-imagenet

Pre-trained Models

• Training a model on ImageNet (14m+ annotated images) from scratch takes days or weeks.

• Many models trained on ImageNet and their weights are publicly available

89

ImageNet & Pre-trained Models

• Many models trained on ImageNet and their weights are publicly
available
• Transfer learning

• Use pre-trained weights, remove last layers to compute representations of
images

• Train a classification model from these features on a new classification task
• The network is used as a generic feature extractor
• Better than handcrafted feature extraction on natural images

90

Fine-tuning Pre-trained Models

• Fine-tuning
• Retraining the (some) parameters of the network (given enough data)
• Truncate the last layer(s) of the pre-trained network
• Freeze the remaining layers weights
• Add a (linear) classifier on top and train it for a few epochs
• Then fine-tune the whole network or the few deepest layers
• Use a smaller learning rate when fine tuning

91

PyTorch Tutorial

• Finetuning the convnet: initialize
the network with a pretrained
network. Rest of the training looks
as usual.

• ConvNet as fixed feature
extractor: freeze the weights for
all of the network except that of
the final fully connected layer.
This last fully connected layer is
replaced with a new one with
random weights and only this
layer is trained.

92
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-
image-classification-localization-detection-e39402bfa5d8

…

Fine-tuning Example

• Semantic segmentation results
(overlaying with the test map)
using pre-trained PSPNet with
large size training data and
trained from the shallow (top
left), middle (top right), and
deep layers (bottom left) (FP in
red and TP in blue)

93

Bias and Ethical Concerns

• Neural networks are great approximators
• You get what you trained with

• Training data can have bias
• Model can have bias
• Applications can discriminate against certain populations

• “In July 2020, the National Institute of Standards and Technology (NIST)
conducted independent assessments to confirm these results. It reported that
facial recognition technologies for 189 algorithms showed racial bias toward
women of color. NIST also concluded that even the best facial recognition
algorithms studied couldn’t correctly identify a mask-wearing person nearly
50% of the time.”

94
https://learn.g2.com/ethics-of-facial-recognition

CNN Summary

• A powerful neural network architecture for many tasks, especially
computer vision
• Reduce the number of parameters (parameter sharing)
• Capture spatial interactions in a neighborhood (i.e., the kernel size)
• Capture consistent spatial interactions across the input space (e.g.,

the input image) – could be a limitation
• Many types of CNN architectures and pretrained models are available
• Models can have bias and ethical concerns should be addressed

95

Acknowledgements

• Deep learning slides adapted from https://m2dsupsdlclass.github.io/lectures-labs/ by Olivier
Grisel and Charles Ollion (CC-By 4.0 license)

• Gil, Yolanda (Ed.) Introduction to Computational Thinking and Data Science. Available from
http://www.datascience4all.org

96

https://m2dsupsdlclass.github.io/lectures-labs/
http://www.datascience4all.org/

These materials are released under a CC-BY
License

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

https://creativecommons.org/licenses/by/2.0/

Please credit as: Chiang, Yao-Yi Introduction to Spatial Artificial Intelligence. Available from
https://yaoyichi.github.io/spatial-ai.html

If you use an individual slide, please place the following at the bottom: “Credit:
https://yaoyichi.github.io/spatial-ai.html

We welcome your feedback and contributions.

Artwork taken from
other sources is
acknowledged
where it appears.
Artwork that is not
acknowledged is by
the author.

Credit: http://www.datascience4all.org/

