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What have we 
covered so 
far?
• Clustering
• Dimension 

Reduction
• Random Forest

• Classification
• Regression

2
https://vas3k.com/blog/machine_learning/
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What have we 
covered so 
far?
• Classical ML
• Ensembles



Overhead Imagery Understanding Tasks

4Thorsten Hoeser and Claudia Kuenzer. 2020. Object detection and image segmentation with deep learning on earth observation 
data: A review-part i: Evolution and recent trends. Remote Sensing. Retrieved from https://www.mdpi.com/723500

https://www.mdpi.com/723500


Object Detection & Recognition in 1999

• SIFT is one of most 
popular image 
feature extraction 
and description 
algorithms
• SIFT extracts feature 

points and describe 
them with a scale, 
illumination, and 
rotational invariant 
descriptor
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SIFT (Scale Invariant Feature Transform)

https://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O



Object Detection & Recognition in 1999
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SIFT (Scale Invariant Feature Transform)

https://iq.opengenus.org/scale-invariant-feature-transform/



Object Detection & Recognition in 1999
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SIFT (Scale Invariant Feature Transform)

https://iq.opengenus.org/scale-invariant-feature-transform/



Object Detection & Recognition in 1999
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SIFT (Scale Invariant Feature Transform)



Object Detection & Recognition in 1999
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SIFT (Scale Invariant Feature Transform)

https://iq.opengenus.org/scale-invariant-feature-transform/



Object Detection & Recognition in 1999
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SIFT (Scale Invariant Feature Transform)

https://iq.opengenus.org/scale-invariant-feature-transform/



Map Processing

• The small image on the 
right: hotel sample
• The small white circles on 

the maps: SURF descriptors
• The yellow lines connect 

matches between the SURF 
descriptors of the map area 
and the sample. 

11Using Historical Maps in Scientific Studies: Applications, Challenges, and Best Practices. Chiang, Y.; Duan, W.; Leyk, S.; Uhl, J. H; and Knoblock, C. 
A of SpringerBriefs in GeographySpringer International Publishing, 2020.



Handcrafted Image Features

• Pros
• Simple, easy to implement
• Do not require significant computational power
• Somehow explainable results

• Cons
• Not very robust (e.g., objects need to be very similar for a match)
• Limited computer vision applications

12
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What have we 
covered so 
far?
• Classical ML
• Ensembles



Neural Networks and Deep 
Learning
A short introduction

14



Deep Neural Networks

• Neural networks with 
lots of “neurons” and 
layers

15



Deep Neural Networks

• Neural networks with 
lots of “neurons” and 
layers
• Flexible network 

modules 
• Can capture non-linear 

relationships in data

16
https://vas3k.com/blog/machine_learning/



Deep Neural Networks

• Neural networks with 
lots of “neurons” and 
layers
• Flexible network 

modules 
• Can capture non-linear 

relationships in data
• Can take advantage of 

large amounts of 
training data
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Open Source Tools and Models
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DL for Computer Vision



DL for Natural Language Processing

20



DL for CV + NLP

21



Neural Networks for Classification

• Neural networks are functions with tunable 
parameters
• Lots of parameters

• K-Class Classification
• 𝐟(⋅; 𝜃): ℝ! → (0,1)"

• Sample 𝑠 in dataset 𝑆:
• 𝐱# ∈ ℝ!

• Expected output:
• 𝑦# ∈ 0, 𝐾 − 1

• Output is a conditional probability 
distribution:
• 𝐟(𝐱#; 𝜃)$ = 𝑃(𝑌 = 𝑐|𝑋 = 𝐱#)

22



Artificial Neuron
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Artificial Neuron
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𝑧 𝐱 = 𝐰!𝐱 + 𝑏
𝑓 𝐱 = 𝑔 𝐰!𝐱 + 𝑏

𝐱, 𝑓 𝐱 input and output
𝑧(𝐱) pre-activation (intermediate results)
𝐰, 𝑏 weights and bias
𝑔 activation function

e.g., [0.01,0.03,0.04]Tx[1,2,3]+9



Layer of Neurons
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𝑧 𝐱 = 𝐰!𝐱 + 𝑏
𝑓 𝐱 = 𝑔 𝐰!𝐱 + 𝑏

𝐱, 𝑓 𝐱 input and output
𝑧(𝐱) pre-activation (intermediate results)
𝐰, 𝑏 weights (vector) and bias (scalar)
𝑔 activation function

𝐟 𝐱 = 𝑔 z(x) = 𝑔 𝐖𝐱 + 𝐛
𝐖, 𝐛 now matrix and vector



One Hidden Layer Network
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𝐳" 𝐱 = 𝐖"𝐱 + 𝐛"



One Hidden Layer Network
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𝐳" 𝐱 = 𝐖"𝐱 + 𝐛"

𝐡 𝐱 = 𝑔 𝐳" 𝐱 = 𝑔 𝐖"𝐱 + 𝐛"



One Hidden Layer Network
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𝐳" 𝐱 = 𝐖"𝐱 + 𝐛"

𝐡 𝐱 = 𝑔 𝐳" 𝐱 = 𝑔 𝐖"𝐱 + 𝐛"

𝐳# 𝐱 = 𝐖#𝐡 𝐱 + 𝐛#



One Hidden Layer Network
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𝐳" 𝐱 = 𝐖"𝐱 + 𝐛"

𝐡 𝐱 = 𝑔 𝐳" 𝐱 = 𝑔 𝐖"𝐱 + 𝐛"

𝐳# 𝐱 = 𝐖#𝐡 𝐱 + 𝐛#

𝐟 𝐱 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐳# = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐖#𝐡 𝐱 + 𝐛#



One Hidden Layer Network
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Computational Graph



Element-wise activation functions
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blue: activation function
green: derivative



Activation Functions

32

What if polynomial regression still could not find a good fit? 

• Activation functions 
introduce non-linearities
• Linear

• 𝑧 𝐱 = 𝐰9𝐱 + 𝑏

• Non-linear
• 𝑓 𝐱 = 𝑔 𝐰9𝐱 + 𝑏



Softmax function

• “Any time we wish to represent a probability distribution over a 
discrete variable with n possible values, we may use the softmax
function. This can be seen as a generalization of the sigmoid function 
which was used to represent a probability distribution over a binary 
variable.” Deep Learning

33
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Softmax Example

• Class 0: [1, 0, 0]
• Class 1: [0, 1, 0]
• Class 2: [0, 0, 1]
• True y for an input x

• [0, 1, 0]

• Softmax results scale to probabilities and sum up to 1.0
• [0.09003057 0.66524096 0.24472847]
• 𝑝(𝑌 = 𝑐|𝑋 = 𝐱) = so[max(𝐳(𝐱))?
• Might use argmax() to return [0, 1, 0] -> Class 1

34
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https://machinelearningmastery.com/softmax-activation-function-with-
python/#:~:text=The%20softmax%20function%20is%20used%20as%20the%20activation%20function%20in,more%
20than%20two%20class%20labels.



Training the network

• From x = [x0…xn-1], the network generates [0.09003057 0.66524096 
0.24472847]
• What if the true label is [1, 0, 0]?

• Adjust 𝜃 = (𝐖8; 𝐛8;𝐖9; 𝐛9) so that hopefully the next prediction 
will be closer to the true label

35



Training the network

• Using the training data, find 𝜃 = (𝐖8; 𝐛8;𝐖9; 𝐛9) that minimize
some loss function w.r.t the quality of the prediction
• 𝑙 𝐟 𝐱@; 𝜃 , 𝑦@

• We need some way to quantitatively compare the two probability 
distributions: [0.09003057 0.66524096 0.24472847] and [1, 0, 0] 
• e.g., using cross entropy to measure the difference between the predicted 

distribution to the ground truth label

• The comparison results will give the network some directions to 
generate a prediction closer to [1, 0, 0] 
• by updating 𝜃 = (𝐖A; 𝐛A;𝐖B; 𝐛B)

36



Avoid Overfitting

• Typically, minimizing 𝑙 𝐟 𝐱:; 𝜃 , 𝑦: is 
not enough
• Especially with complex models (lots of 

parameters) 
• Regularization

• We might want to also add a 
regularization term
• e.g., L2: 𝜆Ω(𝜃) = 𝜆(||𝑊%||& + ||𝑊'||&)
• Recall: 𝜃 = (𝐖%; 𝐛%;𝐖'; 𝐛')

• Dropout
• Early stopping

37
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/



Gradient Descent

• Initialize 𝜃 = (𝐖8; 𝐛8;𝐖9; 𝐛9) randomly
• For 𝐸 epochs perform:
• For all samples (𝑠 ⊂ 𝑆)

• Compute gradients from all samples: Δ = ∇C𝐿@(𝜃)
• Update parameters: 𝜃 ← 𝜃 − 𝜂Δ
• 𝜂 > 0 is called the learning rate

• Repeat until the epoch is completed (all of 𝑆 is covered)
• Stop when reaching criterion:

• e.g., error stops decreasing when computed on validation set

38



Computing Gradients

• Output Weights: AB(𝐟(𝐱),C)
AD!,#

$

• Hidden Weights: AB(𝐟(𝐱),C)
AD!,#

%

• The network is a composition of 
differentiable modules

• Instead of computing the gradients 
for each layer individually, we can 
apply the “chain rule”

• Easy to calculate with complex 
network and loss functions

39

• Output bias: AB(𝐟(𝐱),C)
AE!

$

• Hidden bias: AB(𝐟(𝐱),C)
AE!

%



Backpropagation

40
https://machinelearningmastery.com/difference-between-backpropagation-and-stochastic-gradient-descent/
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd



Stochastic Gradient 
Descent with Mini Batch

• Initialize 𝜃 = (𝐖8; 𝐛8;𝐖9; 𝐛9) randomly
• For 𝐸 epochs perform:
• Randomly select a small batch (mini-batch) of samples (𝐵 ⊂ 𝑆)

• Compute gradients: Δ = ∇C𝐿D(𝜃)
• Update parameters: 𝜃 ← 𝜃 − 𝜂Δ
• 𝜂 > 0 is called the learning rate

• Repeat until the epoch is completed (all of 𝑆 is covered)
• Stop when reaching criterion:

• e.g., error stops decreasing when computed on validation set

41
Watch me: https://www.youtube.com/watch?v=vMh0zPT0tLI



Initialization 
and Learning
• Normalize your input
• Initialize weights with 

random numbers (bias 
to 0)

• Adjust SGD learning 
rate

• Momentum
• Accumulate gradients 

across successive 
updates

• Other optimizers

42
Credits: Alec Radford



Many Types of Neural Network Architectures

• Graph Neural Networks
• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformer
• We can also mix them!

43



Graph Neural Networks

44
http://snap.stanford.edu/decagon/
https://giters.com/liyaguang/DCRNN



Convolutional Neural Networks

45https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53



Recurrent Neural Networks

46
https://towardsdatascience.com/language-translation-with-rnns-d84d43b40571



Transformer

47
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270



Neural Networks & DL Summary

• DL is very versatile and can capture non-linear relationships
• DL can take advantage of large amounts of training data
• Design a DL network include the decisions of network architectures, 

loss functions, and regularizer
• Training a DL network concerns initialization (including data 

normalization), learning rate, learning algorithms, and batch sizes 
(SGD)
• Many open-source tools, books, and tutorials are available online

48



Convolutional Neural Networks
A short introduction

49



Image as Functions

50
https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html



Image as Functions

51
https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html



Image Classification with Dense Layers

• How many parameters 
do we need?
• Two hidden layers
• Fully connected
• Assuming a 28 x 28 

image, 3 channels (RGB), 
2 layers, 1,000 neuron 
each
• 28 x 28 x 3 x 1000 + 1000 

x 1000 + 2 x 1000 = 
3.3M!

52
https://vas3k.com/blog/machine_learning/



Image Classification with Dense Layers

• Spatial structure is not 
used
• Spatial relations 

between pixel values

• The input image is 
“flattened” 
• From 2D pixels to 1D 

inputs

53
https://vas3k.com/blog/machine_learning/



Image Filters, Convolution, Kernel

54
https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html



Image Filters, Convolution, Kernel
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https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html



Image Filters, Convolution, Kernel

• Apply a convolution kernel on the image to 
generate another image

• The output image can have a different size from 
the input image, depending on the kernel 
sizes/types, stride sizes, and padding methods

56

• Each cell in the output image 
summarizes a 3 x 3 area in the 
original image

• The same summarization 
operation for every cell, e.g., 
use the average intensity

16 x 12 5 x 4
https://github.com/vdumoulin/conv_arithmetic



Strides

• Strides: increment step size for the convolution operator
• Reduces the size of the output map
• A stride of 2:

57



Padding

• Padding: artificially fill borders of 
image
• Useful to keep spatial dimension 

constant across filters
• Useful with strides and large 

receptive fields
• Usually: fill with 0s

58



Padding

59



Sizes and Dimensions

• Assuming square input, dimension i x i
• Padding size = p
• Stride size = 1
• Kernel size = k
• Output dimension = o x o

𝑜 = 𝑖 – 𝑘 + 2× 𝑝 + 1
• Read https://arxiv.org/abs/1603.07285

60



Sizes and Dimensions

61
https://arxiv.org/abs/1603.07285

𝑜 = 𝑖 – 𝑘 + 2 × 𝑝 + 1



Sizes and Dimensions
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https://arxiv.org/abs/1603.07285

𝑜 = 𝑖 – 𝑘 + 2 × 𝑝 + 1



Sizes and Dimensions
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https://arxiv.org/abs/1603.07285

𝑜 = 𝑖 – 𝑘 + 2×𝑝 + 1; 𝑘 = 2 ×𝑝 + 1



Sizes and Dimensions

64
https://arxiv.org/abs/1603.07285

𝑜 = 𝑖 – 𝑘 + 2×𝑝 + 1; 𝑝 = 𝑘 − 1



Convolution in Neural Networks

• 𝑥 is a 3×3 chunk (dark area) of 
the image (blue array)
• Kernel is the subscripts in the 

dark area
• A neuron is parameterized with 

the kernel
• 3×3 weight matrix 𝐰

65
https://arxiv.org/abs/1603.07285

𝑘 ⋆ 𝑖𝑚 (𝑥, 𝑦)

=O

'%)

*

P
+%)

*

𝑘(𝑛,𝑚). 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

Image: im, dimensions 5x5
Kernel: k, dimensions 3x3



Convolution in Neural Networks

• 𝑥 is a 3×3 chunk (dark area) of 
the image (blue array)
• Kernel is the subscripts in the 

dark area
• A neuron is parameterized with 

the kernel
• 3×3 weight matrix 𝐰

• The activation obtained by sliding 
the kernel window to compute: 

𝑧(𝑥) = 𝑟𝑒𝑙𝑢(𝐰9𝑥 + 𝑏)

66
https://arxiv.org/abs/1603.07285

𝐰!𝑥
𝑘 ⋆ 𝑖𝑚 (𝑥, 𝑦)

=O

'%)

*

P
+%)

*

𝑘(𝑛,𝑚). 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

Image: im, dimensions 5x5
Kernel: k, dimensions 3x3



Motivations

• Local connectivity
• A neuron depends only on a few local input 

neurons
• Translation invariance

• Comparison to Fully connected
• Parameter sharing, reduce overfitting
• Make use of spatial structure: strong prior for 

vision!

67

…

Fully connected (dense layer)

Convolutional layer

…
?

#current layer neurons x #previous layer 
neurons + #current layer neurons 

Kernel dimensions + 1

1D Convolution View: 
How many parameters 
do we need?



Multiple Channels

• Colored image = tensor of shape (height, width, channels)
• Convolutions are usually computed for each channel separately and 

summed:

68

𝑘 ⋆ 𝑖𝑚,#-#. = P
,%)

*

𝑘, ⋆ 𝑖𝑚,



Multiple Convolutions

• Multiple kernel sizes aka receptive fields (usually 1, 3, 5, 7, 11)

69



Multiple Convolutions

• Multiple kernel sizes aka receptive fields (usually 1, 3, 5, 7, 11)
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Multiple Convolutions

• Multiple kernel sizes aka receptive fields (usually 1, 3, 5, 7, 11)
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Multiple Convolutions

• Multiple kernel sizes aka receptive fields (usually 1, 3, 5, 7, 11)

72



Pooling

• Spatial dimension reduction
• Local invariance
• No parameters: max or average of 2x2 units

73
http://cs231n.github.io/convolutional-networks



Put it all together

Input
Conv blocks
• Convolution + activation (relu)
• Convolution + activation (relu)
• ...
• Maxpooling 2x2
Output
• Fully connected layers
• Softmax

74



AlexNet

• First conv layer: kernel 11x11x3x96 stride 4
• Kernel shape: (11,11,3,96)
• Output shape: (55,55,96)
• Number of parameters: 34,944
• Equivalent MLP parameters: 43.7 x 1e9

75
Simplified version of Krizhevsky, Alex, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012



Hierarchical Representation

76



AlexNet

• One of the first deep convolutional networks to achieve considerable 
accuracy on the 2012 ImageNet LSVRC-2012 challenge 
• 84.7% vs 73.8% (second best)

• Data augmentation and dropout layers to reduce overfitting
• Use ReLu to avoid the vanishing gradient problem

77



Vanishing gradient problem

• Recall that the optimization process is based on backpropagation of gradient computed with the 
loss function

• When the gradients are already small, the chain rule makes the gradients of the earlier layers 
even smaller (e.g., decreases exponentially the number of layers)

• Earlier layers are difficult to train – weights do not change due to the small gradients

78

Why Relu can help?
blue: activation function
green: derivative



Let’s go deeper: VGG-16 

• More layers than AlexNet
• 138m vs 62m parameters

• Effectively use fixed size, small 
kernels to replace larger, 
variable size kernels

• Building blocks:
• Conv, Conv, Max Pooling or
• Conv, Conv, Conv, Max Pooling

79
Simonyan, Karen, and Zisserman. "Very deep convolutional networks for large-scale image recognition." (2014)

138 million parameters



Let’s go wider: GoogleNet Inception 

• Capture global (semantic) 
information with larger kernel
• Capture local (spatial) 

information with smaller kernel
• Use multiple variable size kernels 

in the same layer 
• Fewer layers, easier to train
• Still capture both global and local 

information

80



1D convolution in GoogleNet

• Reduce the number of channels
• Summed

• Selectively squeeze information 
from multiple channels in the 
previous layer to 1 channel 
• Like dimension reductions
• Allow efficient use of multiple 

kernels

81https://andre-ye.medium.com/the-clever-trick-behind-googles-inception-the-1-1-
convolution-58815b20113



Can we go deeper again? 
ResNet

• More layers, deeper models
• 34, 50, 101, 152 layers

• Skipped connections pass information across layers
• Mitigate (but not solve) the vanishing gradient 

problem

82
He, Kaiming, et al. "Deep residual learning for image recognition." CVPR. 2016.



Residual Connections

• Also called the skipped 
or skip connections
• Used in many different 

types of neural networks 
to facilitate training 
(e.g., mitigate the vanish 
gradient problem)

83
https://towardsdatascience.com/what-is-residual-connection-efb07cab0d55



Residual Connections

• As ensembles of shallow 
neural networks
• Empirically, residual 

connections often help 
generate better models 
and results, e.g., see 
DenseNet

84
https://towardsdatascience.com/what-is-residual-connection-efb07cab0d55



85
from Kaiming He slides "Deep residual learning for image recognition." ICML. 2016.



AlexNet, VGG, Inception, ResNet

• FLOP = floating point operations (required for a forward pass)
• e.g., training AlexNet would take similar time as training Inception

86
https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96



State of 
the Art  

87Meta Pseudo Labels, Hieu Pham et al. 
(Jan 2021)



State of the Art 

88
https://paperswithcode.com/sota/image-classification-on-imagenet



Pre-trained Models

• Training a model on ImageNet (14m+ annotated images) from scratch takes days or weeks.

• Many models trained on ImageNet and their weights are publicly available

89



ImageNet & Pre-trained Models

• Many models trained on ImageNet and their weights are publicly 
available
• Transfer learning

• Use pre-trained weights, remove last layers to compute representations of 
images

• Train a classification model from these features on a new classification task
• The network is used as a generic feature extractor
• Better than handcrafted feature extraction on natural images

90



Fine-tuning Pre-trained Models

• Fine-tuning
• Retraining the (some) parameters of the network (given enough data)
• Truncate the last layer(s) of the pre-trained network
• Freeze the remaining layers weights
• Add a (linear) classifier on top and train it for a few epochs
• Then fine-tune the whole network or the few deepest layers
• Use a smaller learning rate when fine tuning

91



PyTorch Tutorial

• Finetuning the convnet: initialize 
the network with a pretrained 
network. Rest of the training looks 
as usual.

• ConvNet as fixed feature 
extractor: freeze the weights for 
all of the network except that of 
the final fully connected layer. 
This last fully connected layer is 
replaced with a new one with 
random weights and only this 
layer is trained.

92
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-
image-classification-localization-detection-e39402bfa5d8

…



Fine-tuning Example

• Semantic segmentation results 
(overlaying with the test map) 
using pre-trained PSPNet with 
large size training data and 
trained from the shallow (top 
left), middle (top right), and 
deep layers (bottom left) (FP in 
red and TP in blue)

93



Bias and Ethical Concerns

• Neural networks are great approximators 
• You get what you trained with

• Training data can have bias
• Model can have bias
• Applications can discriminate against certain populations

• “In July 2020, the National Institute of Standards and Technology (NIST) 
conducted independent assessments to confirm these results. It reported that 
facial recognition technologies for 189 algorithms showed racial bias toward 
women of color. NIST also concluded that even the best facial recognition 
algorithms studied couldn’t correctly identify a mask-wearing person nearly 
50% of the time.”

94
https://learn.g2.com/ethics-of-facial-recognition



CNN Summary

• A powerful neural network architecture for many tasks, especially 
computer vision
• Reduce the number of parameters (parameter sharing)
• Capture spatial interactions in a neighborhood (i.e., the kernel size)
• Capture consistent spatial interactions across the input space (e.g., 

the input image) – could be a limitation
• Many types of CNN architectures and pretrained models are available 
• Models can have bias and ethical concerns should be addressed

95
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