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Motivation COVID 19 

User Profiling

Recommendations

Ads targeting

Insurance

Threats DetectionMobility Behavior

Mobility behavior: 
travel activity describing 
a user’s movements, e.g., 
work commute, 
shopping, school 
commute, dining



Idea

Trajectories Clusters Mobility Behavior



• Various temporal and 
spatial scales may represent 
the same mobility behavior

• 50 minutes work commute:
• 14 miles, 44 miles, 8 

miles
• 14 miles work commute
• 20 min, 50 min, 1.5 hour

Challenge:  Multi-scale Trajectories



Trajectory Clustering Techniques

• Based on similarity of raw spatiotemporal features [AIR’17]

• Sequence distance measurement

• Dynamic Time Warping (DTW), Longest Common SubSequence

(LCSS)

• Clustering based on the distances

• kMeans-DBA [ICDM’14], DBSCAN [CVPR’09], Hierarchical 

Clustering



Limitations of Traditional Trajectory 
Clustering Techniques 

Prone to scales & noises

No activity context information

Pre-defined similarity vs. data-driven



DETECT: Deep Trajectory Clustering for 
Mobility-Behavior Analysis 

• Address varying spatial & temporal scales

• Aware of geographical context

• Work for variable lengths of sequences

• Learn useful properties driven by data

• Avoid expensive manual labeling

Convert trajectories to 
sequences of contexts

Fixed-size representation 
(embedding) with RNN

Embedding Clustering and 
Optimization
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Approach

Sequence DynamicsContext-awareAll-scale

DETECT [BigData 19]

Yue, M., Li, Y., Yang, H., Ahuja, R., Chiang, Y.-Y., and Shahabi, C. (December 2019). DETECT: Deep Trajectory Clustering for 
Mobility-Behavior Analysis. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), pp. 988–997, 
Los Angeles, CA, USA



All-scale: Stay Points

Stay points [SIGSPATIAL’08] are meaningful locations where:
1. the user travels within a small range of space 
2. the user stays in this range for some time



All-scale: Fast Stay Point Extraction

• Fast-SPD:
• Scan each trajectory to find consecutive sub-trajectories that the 

user travel within a limited range but stay for a long time 
• Use the centers of such sub-trajectories as stay points



Context-aware: Geographical Augmentation

For each extracted stay point          :

1. create a spatial buffer

2. search a gazetteer for POI’s in the buffer

3. count POIs in the buffer

4. generate a normalized vector

Normalized number of POI categories, 
e.g., business area
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Sequence Dynamics: RNN-AE + Clustering

Phase I:

Phase II:



Phase I: RNN Autoencoder

RNN RNN RNN

Reconstructed Feature

Input feature

Input

Trajectory Representation

RNN RNN RNN

Encoder Decoder

Loss function: 



Phase II: Refine for clean clusters

Input feature

Input

Trajectory 
Representation

RNN RNN RNN

Non-discriminative Discriminative

RNN-AE (Phase I） Clustering layer (Phase II)

Reconstruction Cluster-aware



Loss function: 

Phase II: Unsupervised clustering

Minimizing the KL distance to compact the clusters

Current t-distribution: Auxiliary distribution:

and          could be interpreted as the 
probability of trajectory i is assigned to cluster j

If qij is small, qij
2 will be even smaller

• punish uncertain cluster assignments
• high certain cluster assignments remain high
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Experimental settings

● Dataset: GeoLife

○ 17,621 trajectories (601 labeled).
○ 6 labels: “dining activities”, “working commutes”, etc.
○ 14,000 POIs in Beijing

● Evaluation Metrics

○ With label: Rand Index (RI), Mutual Information (MI), Purity Fowlkes-
Mallows Index (FMI)

○ Without label: Silhouette Score, Dunn index, Within-like Criterion, Between-
like Criterion



Labeling Platform



Labeling Platform



With-label: quantitative results

Distance Clustering

DTW K-Means

LCSS DBSCAN

SSPD Hierarchical 
clustering

Method RI MI Purity FMI
KM-DBA 0.33 0.64 0.58 0.58
DB-LCSS 0.22 0.55 0.51 0.56
RNN-AE 0.39 0.46 0.56 0.53
SSPD-HCA 0.52 0.93 0.66 0.67
KM-DBA* 0.51 0.91 0.74 0.63
DB-LCSS* 0.5 0.95 0.64 0.66

DETECT Phase I 0.65 1.06 0.84 0.73
DETECT 0.76 1.26 0.89 0.81

RI (Rand Index) (0,1)
MI (Mutual Information) (0, inf)
Purity (0,1)
FMI (Fowlkes-Mallows Index) (0,1)
Higher values for all metrics mean better results.



With-label: quantitative results

Method RI MI Purity FMI
KM-DBA 0.33 0.64 0.58 0.58
DB-LCSS 0.22 0.55 0.51 0.56
RNN-AE 0.39 0.46 0.56 0.53
SSPD-HCA 0.52 0.93 0.66 0.67
KM-DBA* 0.51 0.91 0.74 0.63
DB-LCSS* 0.5 0.95 0.64 0.66

DETECT Phase I 0.65 1.06 0.84 0.73
DETECT 0.76 1.26 0.89 0.81

Raw trajectories

Augmented trajectories

RI (Rand Index) (0,1)
MI (Mutual Information) (0, inf)
Purity (0,1)
FMI (Fowlkes-Mallows Index) (0,1)
Higher values for all metrics mean better results.



With-label: qualitative results

Ground Truth Our Results
Colors indicate different clusters.



With-label: qualitative results

Embedding after Phase I Embedding after Phase II



Without-label: qualitative results

Embedding of the full dataset Recreation Activities



DETECT Extension: context learning
● What if we don’t have a gazetteer for the area, e.g., boat trajectories?

● Idea: Learn the context from trajectories. [ECML 20]

Sequence of words Sequence of locations



Also, one-phase generative model

• Using a generative model to directly learn a cluster-aware hidden space rather 
than a 2-phase procedure

• Can also be used for synthetic trajectory creation and anomaly detection

Embedding by generative 
model

Interpolation between two augmented 
trajectories

Directly learns a cluster-aware hidden space



Future Work: Explainability

• How to generate meaningful (explainable) embeddings to explain the 
clustering results
• provide semantic meanings of individual clusters
• understand outlier trajectories
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