All-Scale Trajectory Clustering for Moving Behavior Detection with Spatiotemporal Recurrent Convolutional Neural Networks¹

Yao-Yi Chiang*

Associate Professor Computer Science and Engineering University of Minnesota yaoyi@umn.edu

¹An NGA Boosting Innovative GEOINT (BIG) project

*With Cyrus Shahabi and Mingxuan Yue, University of Southern California; slides aopted from Mingxuan Yue

OUTLINE

- Overview
- Approach: DETECT
 - Convert trajectories to sequences of contexts
 - Fixed-size representation (embedding) with RNN
 - Embedding Clustering and Optimization
- Experiments
- Future Work

Motivation

Mobility behavior:

travel activity describing a user's movements, e.g., work commute, shopping, school commute, dining

COVID 19

User Profiling

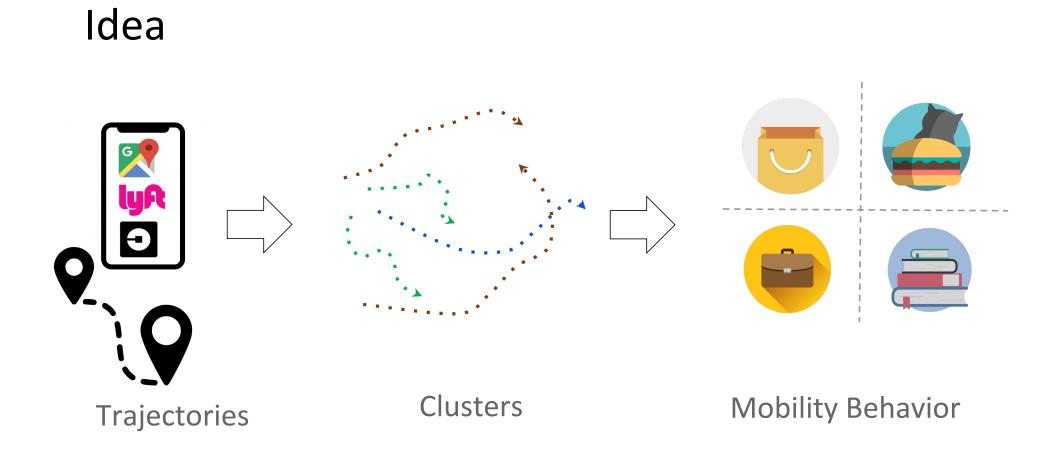
Recommendations

Ads targeting

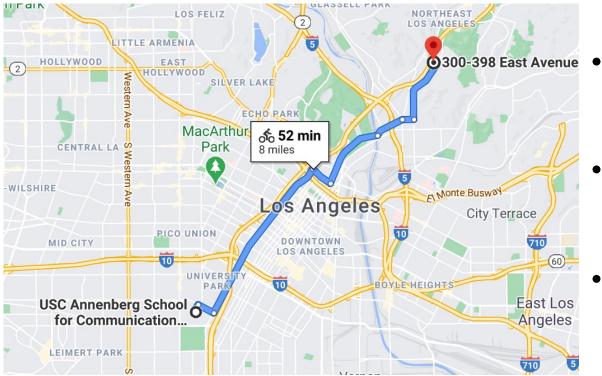
Insurance

Mobility Behavior

Threats Detection



Challenge: Multi-scale Trajectories



- Various temporal and spatial scales may represent the same mobility behavior
- 50 minutes work commute:
 - 14 miles, 44 miles, 8 miles
- 14 miles work commute
 - 20 min, 50 min, 1.5 hour

Trajectory Clustering Techniques

- Based on similarity of raw spatiotemporal features [AIR'17]
- Sequence distance measurement
 - Dynamic Time Warping (DTW), Longest Common SubSequence (LCSS)
- Clustering based on the distances
 - kMeans-DBA [ICDM'14], DBSCAN [CVPR'09], Hierarchical Clustering

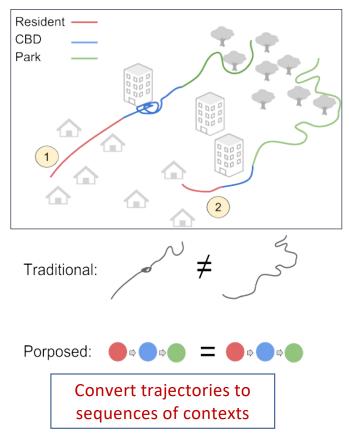
Limitations of Traditional Trajectory Clustering Techniques

Prone to scales & noises 🤒

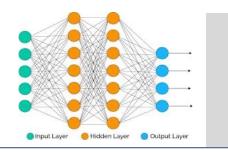
No activity context information \bigotimes

Pre-defined similarity vs. data-driven

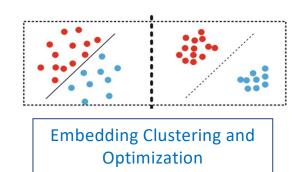
DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis



- Address varying spatial & temporal scales
- Aware of **geographical context**
- Work for variable lengths of sequences
- Learn useful properties driven by data
- Avoid expensive manual labeling

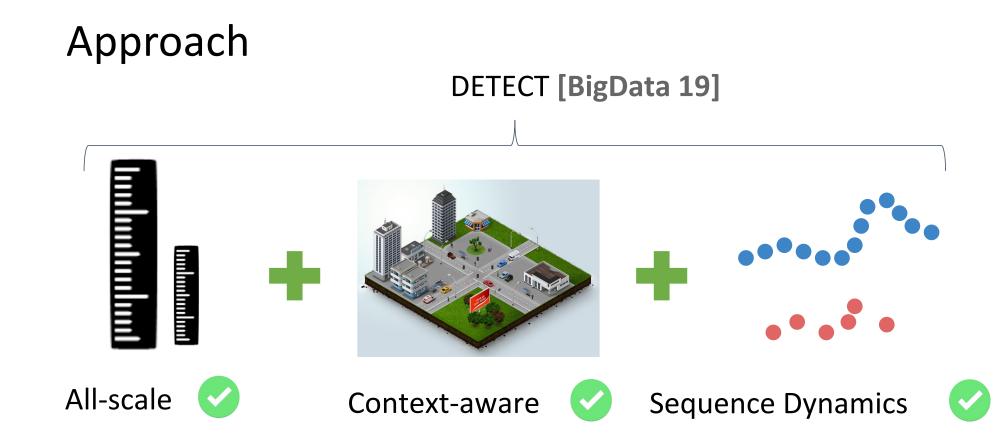


Fixed-size representation (embedding) with RNN



OUTLINE

- Overview
- Approach: DETECT
 - Convert trajectories to sequences of contexts
 - Fixed-size representation (embedding) with RNN
 - Embedding Clustering and Optimization
- Experiments
- Future Work

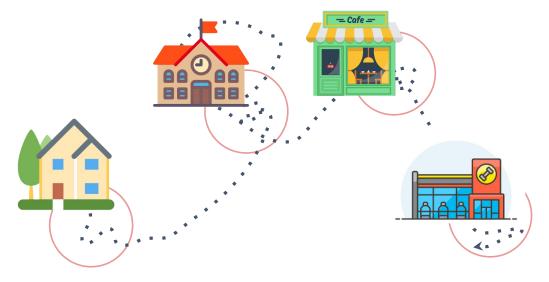


Yue, M., Li, Y., Yang, H., Ahuja, R., **Chiang, Y.-Y.**, and Shahabi, C. (December 2019). DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis. In *Proceedings of the 2019 IEEE International Conference on Big Data (Big Data)*, pp. 988–997, Los Angeles, CA, USA

All-scale: Stay Points

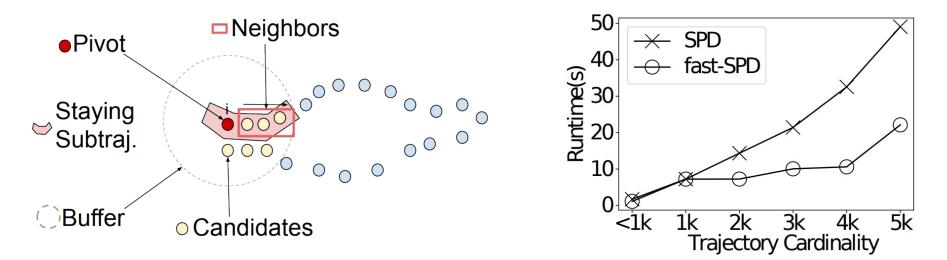
Stay points [SIGSPATIAL'08] are meaningful locations where:

- 1. the user travels within a small range of space
- 2. the user stays in this range for some time



All-scale: Fast Stay Point Extraction

- Fast-SPD:
 - Scan each trajectory to find consecutive sub-trajectories that the user travel within a limited range but stay for a long time
 - Use the centers of such sub-trajectories as stay points



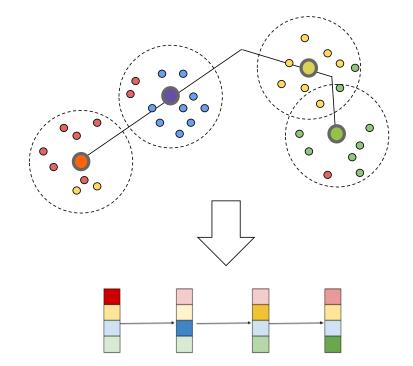
Context-aware: Geographical Augmentation

For each extracted stay point $\dot{s}^{(t)}$:

- 1. create a spatial buffer $b(r_{poi}, \dot{s}^{(t)})$
- 2. search a gazetteer for POI's in the buffer
- 3. count POIs in the buffer
- 4. generate a normalized vector

$$x^{(t)} = \{0.3, 0.09, \dots 0.55\}$$

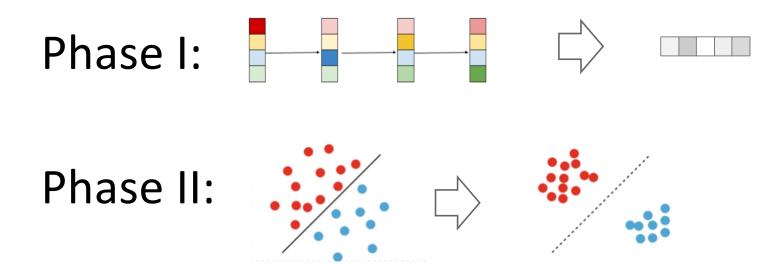
Normalized number of POI categories, e.g., business area



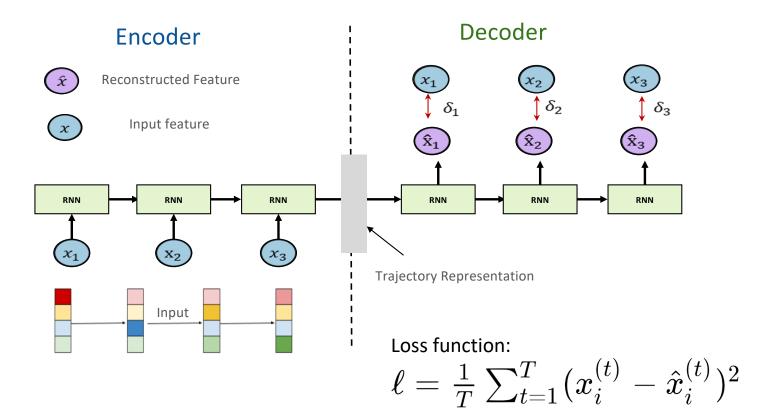
OUTLINE

- Overview
- Approach: DETECT
 - Convert trajectories to sequences of contexts
 - Fixed-size representation (embedding) with RNN
 - Embedding Clustering and Optimization
- Experiments
- Future Work

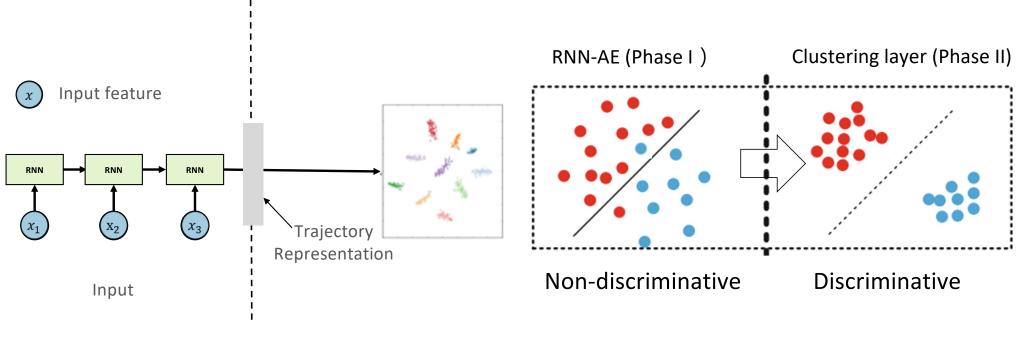
Sequence Dynamics: RNN-AE + Clustering



Phase I: RNN Autoencoder



Phase II: Refine for clean clusters



Reconstruction

Cluster-aware

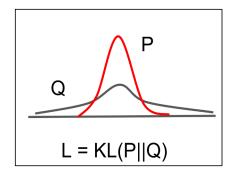
Phase II: Unsupervised clustering

 p_{ij} and q_{ij} could be interpreted as the probability of trajectory *i* is assigned to cluster *j*

Current t-distribution:Auxiliary distribution:Loss function:
$$q_{ij} = \frac{(1+||z_i-\mu_j||^2)^{-1}}{\sum_{j'} (1+||z_i-\mu_{j'}||^2)^{-1}}$$
 $p_{ij} = \frac{q_{ij}^2 \langle \sum_{i'} q_{i'j} \rangle}{\sum_{j'} (q_{ij'}^2 / \sum_{i'} q_{i'j'})}$ $\ell = KL(P||Q) = \sum_i \sum_j p_{ij} \log \frac{p_{ij}}{q_{ij}}$

If q_{ij} is small, q_{ij}^2 will be even smaller

- punish uncertain cluster assignments
- high certain cluster assignments remain high



Minimizing the KL distance to compact the clusters

OUTLINE

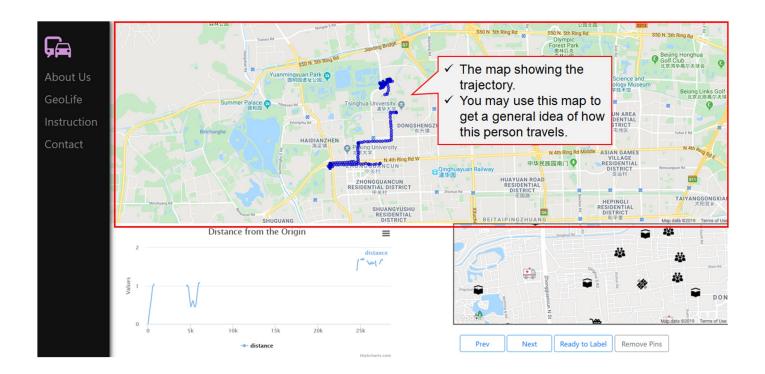
- Overview
- Approach: DETECT
 - Convert trajectories to sequences of contexts
 - Fixed-size representation (embedding) with RNN
 - Embedding Clustering and Optimization
- Experiments
- Future Work

Experimental settings

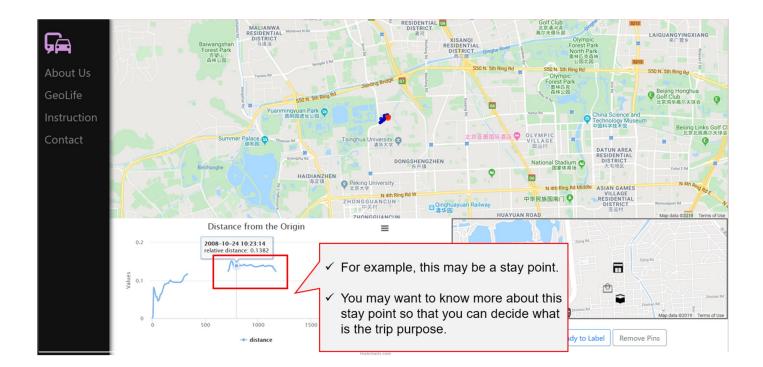
• Dataset: GeoLife

- 17,621 trajectories (601 labeled).
- 6 labels: "dining activities", "working commutes", etc.
- 14,000 POIs in Beijing
- Evaluation Metrics
 - With label: Rand Index (RI), Mutual Information (MI), Purity Fowlkes-Mallows Index (FMI)
 - Without label: Silhouette Score, Dunn index, Within-like Criterion, Betweenlike Criterion

Labeling Platform



Labeling Platform



With-label: quantitative results

Distance	Clustering		
DTW	K-Means		
LCSS	+ DBSCAN		
SSPD	Hierarchical clustering		

Method	RI	МІ	Purity	FMI
KM-DBA	0.33	0.64	0.58	0.58
DB-LCSS	0.22	0.55	0.51	0.56
RNN-AE	0.39	0.46	0.56	0.53
SSPD-HCA	0.52	0.93	0.66	0.67
KM-DBA*	0.51	0.91	0.74	0.63
DB-LCSS*	0.5	0.95	0.64	0.66
DETECT Phase I	0.65	1.06	0.84	0.73
DETECT	0.76	1.26	0.89	0.81

RI (Rand Index) (0,1) MI (Mutual Information) (0, inf) Purity (0,1) FMI (Fowlkes-Mallows Index) (0,1) Higher values for all metrics mean better results.

With-label: quantitative results

	Method	RI	MI	Purity	FMI
•••••	KM-DBA	0.33	0.64	0.58	0.58
	DB-LCSS	0.22	0.55	0.51	0.56
Raw trajectories	RNN-AE	0.39	0.46	0.56	0.53
	SSPD-HCA	0.52	0.93	0.66	0.67
Augmented trajectories	KM-DBA*	0.51	0.91	0.74	0.63
	DB-LCSS*	0.5	0.95	0.64	0.66
	DETECT Phase I	0.65	1.06	0.84	0.73
	DETECT	0.76	1.26	0.89	0.81

RI (Rand Index) (0,1) MI (Mutual Information) (0, inf) Purity (0,1) FMI (Fowlkes-Mallows Index) (0,1) Higher values for all metrics mean better results.

With-label: qualitative results

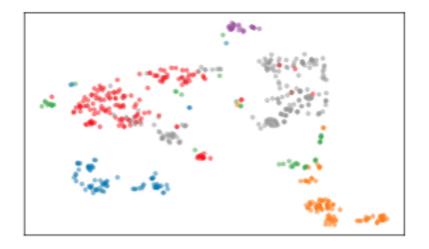


Ground Truth

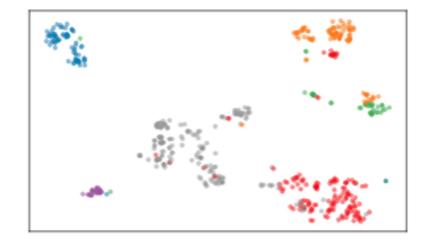
Our Results

Colors indicate different clusters.

With-label: qualitative results

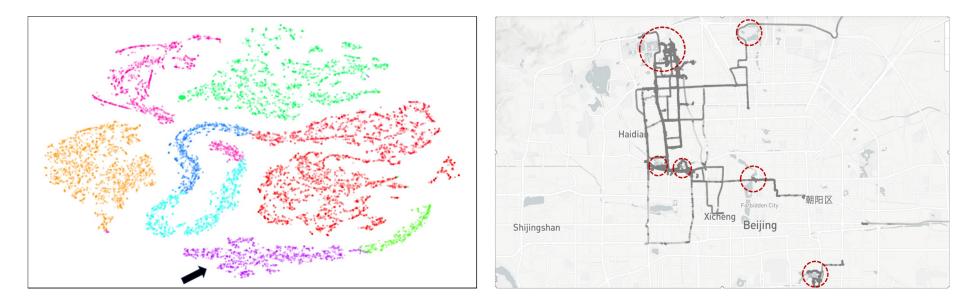


Embedding after Phase I



Embedding after Phase II

Without-label: qualitative results



Embedding of the full dataset

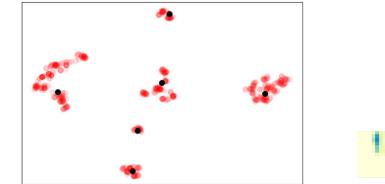
Recreation Activities

DETECT Extension: context learning

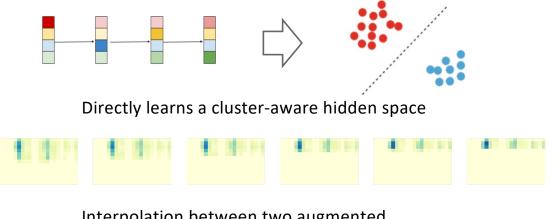
- What if we don't have a gazetteer for the area, e.g., boat trajectories?
- Idea: Learn the context from trajectories. [ECML 20]

Also, one-phase generative model

- Using a generative model to directly learn a cluster-aware hidden space rather than a 2-phase procedure
- Can also be used for synthetic trajectory creation and anomaly detection



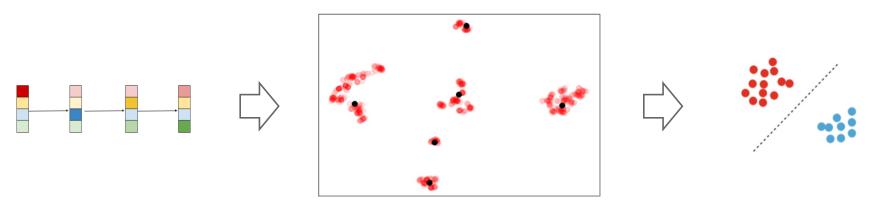
Embedding by generative model



Interpolation between two augmented trajectories

Future Work: Explainability

- How to generate meaningful (explainable) embeddings to explain the clustering results
 - provide semantic meanings of individual clusters
 - understand outlier trajectories



References

[BigData 19] Yue M, Li Y, Yang H, Ahuja R, Chiang YY, Shahabi C. DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis. In Big Data 2019.

[ECML 20] Yue M, Sun T, Wu F, Wu L, Xu Y, **Shahabi C**, Learning a Contextual and Topological Representation of Areas-of-Interest for On-Demand Delivery Application, ECML-PKDD 2020 [ITS 16] Besse, Philippe C., et al. "Review and perspective for distance-based clustering of vehicle trajectories." IEEE Transactions on Intelligent Transportation Systems 17.11 (2016): 3306-3317. [AIR 17] Yuan, Guan, et al. "A review of moving object trajectory clustering algorithms." Artificial Intelligence Review 47.1 (2017): 123-144.

[ICDM 14] Petitjean, François, et al. "Dynamic time warping averaging of time series allows faster and more accurate classification." 2014 IEEE international conference on data mining. IEEE, 2014. [CVPR 09] Morris, Brendan, and Mohan Trivedi. "Learning trajectory patterns by clustering: Experimental studies and comparative evaluation." 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009.

[SIGSPATIAL 08] Li, Quannan, et al. "Mining user similarity based on location history." Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information systems. ACM, 2008.

Acknowledgements

• Gil, Yolanda (Ed.) Introduction to Computational Thinking and Data Science. Available from http://www.datascience4all.org

These materials are released under a CC-BY License

https://creativecommons.org/licenses/by/2.0/

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Artwork taken from other sources is acknowledged where it appears. Artwork that is not acknowledged is by the author.

Please credit as: Chiang, Yao-Yi Introduction to Spatial Artificial Intelligence. Available from https://yaoyichi.github.io/spatial-ai.html

If you use an individual slide, please place the following at the bottom: "Credit: https://yaoyichi.github.io/spatial-ai.html

We welcome your feedback and contributions.

Credit: http://www.datascience4all.org/