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Motivation

Mobility behavior:

travel activity describing
a user’s movements, e.g.,
work commute,
shopping, school
commute, dining
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Challenge: Multi-scale Trajectories
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Various temporal and
spatial scales may represent
the same mobility behavior
50 minutes work commute:
* 14 miles, 44 miles, 8
miles
14 miles work commute
e 20 min, 50 min, 1.5 hour



Trajectory Clustering Techniques

* Based on similarity of raw spatiotemporal features [AIR’17]
* Sequence distance measurement
* Dynamic Time Warping (DTW), Longest Common SubSequence
(LCSS)
* Clustering based on the distances
* kMeans-DBA [ICDM’14], DBSCAN [CVPR’09], Hierarchical

Clustering



Limitations of Traditional Trajectory
Clustering Techniques

gl Prone to scales & noises &

No activity context information Q

Pre-defined similarity vs. data-driven Q



DETECT: Deep Trajectory Clustering for
Mobility-Behavior Analysis
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oo ® Address varying spatial & temporal scales

® Aware of geographical context
® Work for variable lengths of sequences

® Learn useful properties driven by data

® Avoid expensive manual labeling
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Convert trajectories to Fixed-size representation Embedding Clustering and
sequences of contexts (embedding) with RNN Optimization
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Approach
DETECT [BigData 19]

All-scale ©.& Context-aware (.~ Sequence Dynamics
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Yue, M., Li, Y., Yang, H., Ahuja, R., Chiang, Y.-Y., and Shahabi, C. (December 2019). DETECT: Deep Trajectory Clustering for
Mobility-Behavior Analysis. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), pp. 988—997,
Los Angeles, CA, USA



All-scale: Stay Points

Stay points [SIGSPATIAL'08] are meaningful locations where:
1. the user travels within a small range of space

2. the user stays in this range for some time
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All-scale: Fast Stay Point Extraction

* Fast-SPD:

* Scan each trajectory to find consecutive sub-trajectories that the
user travel within a limited range but stay for a long time

* Use the centers of such sub-trajectories as stay points
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Context-aware: Geographical Augmentation

For each extracted stay point s (t).

1. create a spatial buffer b(7pe;, $®))

2. search a gazetteer for POl’s in the buffer
3. count POls in the buffer
4

. generate a normalized vector

2\ ={0.3,0.09, ...0.55}

Normalized number of POI categories,
e.g., business area
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Sequence Dynamics: RNN-AE + Clustering
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Phase |I: RNN Autoencoder
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Phase Il: Refine for clean clusters

RNN-AE (Phase | )
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Phase Il: Unsupervised clustering

Pij and 4 could be interpreted as the
probability of trajectory i is assigned to clusterj

Current t-distribution: Auxiliary distribution: Loss function:
e e ’
%= S e T P T S @ T ary) (PlIQ) = 22 2_; pijlog -

If g;; is small, q; will be even smaller
e punish uncertain cluster assignments P
* high certain cluster assignments remain high Q

Minimizing the KL distance to compact the clusters L = KL(P||Q)
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Experimental settings

e Dataset: Geolife

o 17,621 trajectories (601 labeled).

o 6 labels: “dining activities”, “working commutes”, etc.
o 14,000 POils in Beijing

e Evaluation Metrics
o With label: Rand Index (RI), Mutual Information (M), Purity Fowlkes-
Mallows Index (FMI)

o Without label: Silhouette Score, Dunn index, Within-like Criterion, Between-
like Criterion



Labeling Platform
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Labeling Platform
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With-label: quantitative results

Distance Clustering

DTW K-Means
LCSS + DBSCAN

SSPD Hierarchical
clustering

Rl (Rand Index) (0,1)

MI (Mutual Information) (0, inf)

Purity (0,1)

FMI (Fowlkes-Mallows Index) (0,1)

Higher values for all metrics mean better results.

Method RI Mi Purity FMI
KM-DBA 0.33 0.64 0.58 0.58
DB-LCSS 0.22 0.55 0.51 0.56
RNN-AE 0.39 0.46 0.56 0.53
SSPD-HCA 0.52 0.93 0.66 0.67
KM-DBA* 0.51 0.91 0.74 0.63
DB-LCSS* 0.5 0.95 0.64 0.66
DETECT Phase | 0.65 1.06 0.84 0.73
DETECT 0.76 1.26 0.89 0.81




With-label: quantitative results

Raw trajectories

Augmented trajectories

i1

Rl (Rand Index) (0,1)

MI (Mutual Information) (0, inf)

Purity (0,1)

FMI (Fowlkes-Mallows Index) (0,1)

Higher values for all metrics mean better results.

~ Method RI Ml Purity FMI
KM-DBA 0.33 0.64 0.58 0.58
DB-LCSS 0.22 0.55 0.51 0.56
RNN-AE 0.39 0.46 0.56 0.53
 SSPD-HCA 0.52 0.93 0.66 0.67
. KM-DBA* 0.51 0.91 0.74 0.63
DB-LCSS* 0.5 0.95 0.64 0.66
DETECT Phase | 0.65 1.06 0.84 0.73
. DETECT 0.76 1.26 0.89 0.81




With-label: qualitative results
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With-label: qualitative results

Ty

»e

o“‘ .l..' . .‘". 4 o ’
C" !r

Embedding after Phase | Embedding after Phase Il



Without-label: qualitative results

. % -
v
— A 2
" el
phigy = Cw
b v -
s 7
...l.(_ /
Y3z <\
"=, x
¥
\\

Embedding of the full dataset

s
f‘ \ \\‘ N —,Il
| H T
\\\ 7 -~ '_j
\_-*‘_ Y—]
! -
[ L 1
(RER o
Haidia k
‘AN
NN 0 \\
{ H T L~ WY
{ i ‘1# TSR X
i i Xic'eng
Shijingshan § { Beijing
N v

Recreation Activities



DETECT Extension: context learning

e What if we don’t have a gazetteer for the area, e.g., boat trajectories?

® I|dea: Learn the context from trajectories. [ECML 20]

Target Word

\Deep)Learning|is|very| hard and fun

Context word Context words

Target Word
IDeep)Learning|is|very hard/and fun /& N
S

Context words Context words /
Target Word

Deep [Learningis|very|hard|and fun

Context words Context words

Sequence of words Sequence of locations



Also, one-phase generative model

* Using a generative model to directly learn a cluster-aware hidden space rather
than a 2-phase procedure

* Can also be used for synthetic trajectory creation and anomaly detection
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Embedding by generative Interpolation between two augmented

model trajectories



Future Work: Explainability

* How to generate meaningful (explainable) embeddings to explain the
clustering results
* provide semantic meanings of individual clusters
* understand outlier trajectories

o ? 0q0
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