CC-BY
Attribution

Autoencoder

Yao-Yi Chiang
Computer Science and Engineering
University of Minnesota
yaoyi@umn.edu

Dimension Reduction

* Principle Component Analysis (PCA)

. . . ,,Jf»‘f;“ \
* Projecting the data into a new space XA
using linear transformation O Golden Retriever (UK Show)
 Using SVD or eigenvalue decomposition fgafg el 3 2::::5?;:::::: show)
to find the new space jie' @

| S5 2
,ﬁg oA O Golden Retriever

Baq Q Jindo
saluki
Ve |

DNA Sequence Lo |
%&

Linear VS. Non-Linear

* What if the underlying low dimensional structure is not linear?
* PCA would not be able to find good representative basis vectors

* For example,

Len(Primary Roads) Q
Area(Industry) O | @ h

Day of Week O

h can be a non-linear combination of
three features

Air Quality |

Bad Good

Linear VS. Non-Linear

 What if the underlying low dimensional structure is not linear?
* PCA would not be able to find good representative basis vectors

* Neural Networks?

(0]
] bo

Zo 7
- Zg — —> hO \
o
T @» 20 > > fO
Wh b]l_:[[,71 'W‘O . o o .« e .
l @*Z}?q* Ny
h S
xXr @ i ZH_l @% hHil :
N—-1 o
bK—l

softmax

Autoencoder — Encoder and Decoder

* Encoder
e Encoding the input X into a I
hidden representation Z Flatten an image
to a vector

Encoding

Autoencoder — Encoder and Decoder

* Decoder Encoding
* Decoding the input X’ from the
Reshape to original

hidden representation Z
X'
image size

Decoding >
6

 Encoder
e Encoding the input X into a X
hidden representation Z Flatten an image
to a vector

>

Autoencoder — Encoder and Decoder

 Encoder

e Encoding the input X into a
hidden representation Z

input output
code |

 Decoder

* Decoding the input X’ from the
hidden representation Z

e Usually, Dim(Z) < Dim(X), also
called undercomplete AE decoder

encoder

Autoencoder — Encoder and Decoder

* Encoder For example:
*Z=fX)=0(WX+D) W 32x64; X 64x1,000;
* Decoder Z 32x1,000;

W' 64x32; X' 64x1,000
e X' =g(Z) =o' (W'Z+b") X X

input output
e g and o’ are activation e |
functions

* ¢’ depends on the input type

e e.g., if the inputs have values
between 0 and 1, we can use a
Sigmoid function —

encoder

Autoencoder — Objective Function

* X' = f(g(X))
* The model is trained to minimize a certain loss function which will
ensure that X' is closeto X

 Loss function depends on the inputs

Autoencoder — Objective Function

 When the inputs are real values, we can use Mean Square Error (MSE)

as the loss function
m n
W, W', b, b' MN £t £ by
1= =

J

where m is the number of samples, and n is the number of features

I.

reconstructed original

Compute pixel wise square error
by subtracting the value 10

7

Grey-scale

Autoencoder — Objective Function

 When the inputs are binary, we can use Binary Cross Entropy (BCE)
as the loss function

w, VIIEIII% b’mnz z (xl]logxl] + (1 XU) log(l — xl]))
i=1j=

where m is the number of samples, and n is the number of features

O] 1
O] 2
Z Qo
Ol o

Learn more about BCE: https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

0
1
0

O =000

Link Between PCA and Autoencoder

* The encoder part of an autoencoder is equivalent to PCA if

using the squared error loss function

 sothat XTX is the covariance matrix of the 0 mean data

m
i 1 1
X:: = ——| X;:;: — — xk corr(X) =
Yooym\Y mkz_l J

where x; is the input, j is the feature dimension, and m is the number of samples

https://en.wikipedia.org/wiki/Covariance_matrix

the encoder is a one-layer linear transformation, no bias term
the decoder is a one-layer linear transformation, no bias term

normalizing the input to O mean along each dimension
also divide each input element by the square root of m

1

E[(X5—pp)(X1—p)]

o(X2)o(X1)

E[(Xn—pn)(X1—p1))

E[(X1—p)(X2—p)]

o(X1)o(X2)

1

E[(Xn—pn)(X2—p2))

E[(X1 =) (Xn—pn)]]

E[(X2—po) (Xn—pn)]

o(Xn)o(X1)

o(Xn)o(Xs)

o(X1)o(Xn)

o(X2)a(Xn)

12

Link Between PCA and Autoencoder

 We will show that if
* using a linear decoder and a squared error loss function

* the optimal solution to the following objective function is obtained when
using a linear encoder

n

m
min Lz Z(x-’- — %)
W, W', b, b’ MN 2 beony

i=1j=1

* The above objective function is equivalent to

min(||X — ZW’”F)2

where ||A]|g is the Frobenius Norm of matrix A4, ||A]|F = \/2?;12}1:1 la;;|?

13

Link Between PCA and Autoencoder

* The optimal solution to the problem

min(||X — ZW’”F)2

is given by
X =ZW' = UXVT Recall: from SVD orthogonal
matrices:
where U and V are orthogonal matrices and X' is a diagonal matrix with
non-negative values on diagonal (VTV = I)
VT =vh

* By matching variables one possible solution is

Z=Uz
w=vT

Link Between PCA and Autoencoder

 We will now show that Z is a linear encoding and find an expression
for the encoder weight W

Z=UX

1
2
3
4
5
6

Link Between PCA and Autoencoder

 We will now show that Z is a linear encoding and find an expression
for the encoder weight W

Z=UZX
7 =XXDHXXH vz

1
2
3
4
5
6

Link Between PCA and Autoencoder

 We will now show that Z is a linear encoding and find an expression
for the encoder weight W

Z =UX

7 =XXDHXXH vz

Z = (Xvztuh)uzvtveTut)tuy X=zw'=uzvT

A L AN W N R

Link Between PCA and Autoencoder

 We will now show that Z is a linear encoding and find an expression
for the encoder weight W

Z =UX

7 =XXDHXXH vz

Z = (Xvztuh)uzvtveTut)tuy X=zw'=uzvT

Z =XvzTuT(uzsTuT)-us Vv =D

A L AN W N R

Link Between PCA and Autoencoder

 We will now show that Z is a linear encoding and find an expression
for the encoder weight W

1 7=U%
2 7=XXDHXXDHtux

3 z=@&vzTuT)(uzvTvsTuT)-tuy X=zw'=UsvT

4 7 =xvyTuT(wzsTuT)-us Vv =D

5 7=XvITUTuEsT) WTUz ((ABC)™'=C7'B71ATH)
6

T =U

Link Between PCA and Autoencoder

 We will now show that Z is a linear encoding and find an expression
for the encoder weight W

1 7=U%
2 7=XXDHXXDHtux

3 z=@&vzTuT)(uzvTvsTuT)-tuy X=zw'=UsvT

4 7 =xvyTuT(wzsTuT)-us Vv =D

5 7=XvITUTuEsT) WTUz ((ABC)™'=C7'B71ATH)
6

Z =XviTET)1(2)"1z ur=u™"

Link Between PCA and Autoencoder

 We will now show that Z is a linear encoding and find an expression
for the encoder weight W

1 7=U%
2 7=XXDHXXDHtux

3 z=@&vzTuT)(uzvTvsTuT)-tuy X=zw'=UsvT

4 7 =xvyTuT(wzsTuT)-us Vv =D

5 7=XvITUTuEsT) WTUz ((ABC)™'=C7'B71ATH)
6

Z =XvIT(ET)yY(2)"1x = XV ur=u™"

Link Between PCA and Autoencoder

 We will now show that Z is a linear encoding and find an expression
for the encoder weight W
Z =UX
7 =XXDHXXH vz
Z = (Xvztuh)uzvtveTut)tuy X=zw'=uzvT

Z =XvzTuT(uzsTuT)-us Vv =D
Z = XvETuTuzT)-uTus ((ABC)™'=C7'B71A™Y)
Z =XvIT(ET)yY(2)"1x = XV ur=u™"

e Thus, Z is a linear transformationof X and W =V

Link Between PCA and Autoencoder

* We have encoder W =V

* With SVD, X = UZVT, the columns of V are the orthonormal
eigenvectors of X7 X

X"x=vz'umuzv’
XTX=vxTyyT vr=v
XTXv=v(ZTY)

https://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm#:~:text=The
%20SVD%20represents%20an%20expansion,up%20the%20columns%200f%20U.

Link Between PCA and Autoencoder

* We have encoder W =V

* With SVD, X = UZVT, the columns of V are the orthonormal
eigenvectors of X7 X

 From PCA, we know that the projection matrix is the matrix of
eigenvectors of the covariance matrix

* Since the entries of X are normalized by X;; = e (xu Z’,;”zl xkj),
XTX is the covariance matrix

e Thus, the linear encoder W and the projection matrix for PCA could be
the same

Link Between PCA and Autoencoder

* Nonlinear autoencoder can learn more powerful codes for a given

dimensionality (e.g., 32), compared with linear autoencoder (PCA)

Original

32D Autoencoder

32D Linear
Autoencoder

0
10
20

:Lf

0

‘ q
4
T T

19

o

0
10
20

0

<7
2/ 064 14as 9
7 21641]4[a<7

25

Autoencoder Applications

* Using the hidden representation After training, disregarding the decoder
as the input to classic machine
learning methods e.g., SVM, KNN

input

code

* The latent space can be used for
visualization (e.g., clustering)

* Anomaly detection

encoder

Autoencoder Applications

* Training an autoencoder on a After training, disregarding the decoder
large dataset, then fine tune the
encoder part on your own T
smaller dataset and/or provide [\ code
your own output layers (e.g., _ | ‘
classification) x| Y ' |-

input

encoder

A Fully-Connected Autoencoder on Images

Fully Connected Layer Fully Connected Layer
+ LeakyRelLU + Sigmoid
784 =>32 32 =>784

Flatten image to vector
Reshape 28x28 => 784

7

Reshape vector to image
Dim=32 Reshape 784 =>28x%28
Z 7

7L el 1As ?
Reconstructed ‘7 YAV o i/ ‘f o) 9

0 0 0 0 0

10

Original

<
o
0 20

0 0 0 0 0 0 0 20 0

28
Code: https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L15 autoencoder/code

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L15_autoencoder/code

A Convolutional Autoencoder on Images

One or more One or more
Convolutional Layers Conv-Transpose Layers

=]

PARSITAI-AE SIS S5
Reconstructed 7 L / o RY / g &,

0 00 20 0 0 0 0 0

7

Original

]
S\ 7

0 0 0 0 0

29
Code: https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L15 autoencoder/code

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L15_autoencoder/code

Regular and Transposed Convolution

Regular Convolution Regular Convolution Transposed Convolution Transposed Convolution
filter size =3 x3 filter size =3 x 3 filter size =3 x 3 filter size =3 x 3
padding =1 padding =1 padding =1 padding =1
stride=1 stride = 2 stride=1 stride = 2

input image size =5x5 input image size =5x5 input image size =5x5 input image size =3 x 3
output image size =5x 5 output image size =3 x 3 output image size =5x 5 output image size =5x5

Decoder

RNN Autoencoder for Sequence Data

RIS

XI XZ Xn https://www.nature.com/articles/s41598-019-55320-6

* The normalized count
matrix represents the
gene expression level
in each cell.

count matrix

N

graph
construction

GCN Autoencoder for Graph

* The encoder takes the
count matrix and the
adjacency matrix as
inputs and generates feature decoder
fully connected Iayers reconstructed
low-dimensional latent

count matrix

variables.
graph encoder —
GAT layers latent
varlables * The feature decoder reconstructs the

count matrix.

E— * The graph decoder reconstructs the
Y, \ /’ Y. ~ adjacency matrix.
\ ~ Iclustenng \ b
N N
graph decoder
e The adjacency matrix is L i %@ quadratization layer reconstructed graph
constructed by connecting each ®

cell to its K nearest neighbors.

* Clustering is performed on the latent variables.

32
https://www.nature.com/articles/s41598-021-99003-7/figures/1

Regularized Autoencoder

* Autoencoders are trained to preserve as much information as
possible of the input data with smaller vectors

Regularized Autoencoder

* Autoencoders are trained to preserve as much information as
possible of the input data with smaller vectors

* Moreover, autoencoders are to create meaningful representations of
the input

* More neurons (i.e., hidden size) than the input size allow the network to
compute powerful representations of the input

Regularized Autoencoder

* However, when the hidden dimension is higher than the input
* No compression needed, also called overcomplete AE
* The network trivially learns to just copy, not learning meaningful features

@000
©0000C0):
C D) -

Image by Mitesh M. Khapra

35

Regularized Autoencoder

* Regularized autoencoders aim to avoid overfitting and improve
robustness

* Denoise Autoencoder [1]
e Sparse Autoencoder [2]

[1] Pascal Vincent, et al. “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.".

Journal of machine learning research 11.Dec (2010): 3371-3408.
[2] Ng, Andrew. "Sparse autoencoder." CS294A Lecture notes 72.2011 (2011): 1-19.

36

http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf

Denoise Autoencoder

* The input is partially corrupted by adding noises to or masking some

values of the input vector in a stochastic manner

Original
input

E 0000000

Partially

destroyed Input

OROOXXO [*

Denoising AE architecture by Lilian Weng

D ~ My (g(i) |x(i))

where M, defines the mapping
from the true data samples to the
noisy or corrupted ones, e.g.,
masking noise, Gaussian noise

37

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/

Denoise Autoencoder

* Then the model is trained to recover the original input (note: not the
corrupt one)

Original
input

E 0000000

Partially

destroyed Input

Encoder

E

OROOXXO [»

Denoising AE architecture by Lilian Weng

Ideally they are identical.

XxX~x

Bottleneck!

Decoder
D

An compressed low dimensional
representation of the input.

Reconstructed

input

RO .
min=—>" GO = fy(gs (F0)))?

6’¢n

38

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/

Denoise Autoencoder — Experiment Results

* The model learns a combination of many input dimensions to
recover the denoised version rather than to overfit one dimension,
which helps learn robust latent representation

Original input, corrupted data, and reconstructed data. Copyright by opendeep.org.

http://www.opendeep.org/v0.0.5/docs/tutorial-your-first-model

Sparse Autoencoder

Input layer Hidden layers Output layer

e Sparse autoencoder forces the

model to only have a small ° 0

number of hidden units being

activated at the same time ° e

—~—

\

-!m
O
QG
O

-—

\

Sparse Autoencoder image by Syoya Zhou

https://medium.com/@syoya/what-happens-in-sparse-autencoder-b9a5a69da5c6

Sparse Autoencoder

Hidden layers Output layer

e Sparse autoencoder forces the oot
model to only have a small |
number of hidden units being

activated at the same time

* Loss = reconstruction loss +
regularization loss

* There are two ways to construct
sparsity penalty
* L1 regularization
e KL-divergence

Sparse Autoencoder image by Syoya Zhou

https://medium.com/@syoya/what-happens-in-sparse-autencoder-b9a5a69da5c6

Sparse Autoencoder with KL-divergence

lth

* Let’s say there are s; neurons in the hidden layer and the

activation function for the jt* neuron in this layer is labelled as a]@(.)

Sparse Autoencoder with KL-divergence

* Let’s say there are s; neurons in the [t" hidden layer and the
activation function for the jt* neuron in this layer is labelled as a]@(.)

* The average activation of neuron p; is expected to be a small number
p, known as sparsity parameters

n

1 .
pi == E [a” (x®)] = p

n -

=1
[aj(l)(x(i))] = 1 * if the neuron is activated (e.g., has a value >0.5), 0
otherwise
* nisthe number of input sample

Sparse Autoencoder with KL-divergence

* The KL-divergence measures the difference between two probability

distributions,! one with mean p and the other with mean p(-l)

J
L s
/\l
Lsag = Lyse + ’BZZ D1 (p || P](-)

=1 j=1

* The hyperparameter § controls how strong the penalty applying on
the sparsity loss

1. The probability distribution here can be viewed as Bernoulli distribution, the discrete probability distribution of a random variable which takes the valug 1
with probability p and the value 0 with probability q = p -1: https://en.wikipedia.org/wiki/Bernoulli_distribution

Sparse Autoencoder — Experiment Results

L

/_

5

L

o

v

4

o

9

(o

‘

&

6

6

%

\

3

\

c
i

—|IM [N | O] N

?

Y

NEWnOoe

O
7

>
|

L

O
5
L

SRR

@

NS S ©

Original input

code: https://github.com/AntonP99

9/Sparse

autoencoder/blob/master/Sparse autoenco

Reconstructed data

der.ipyn

b

Reconstructed from latent
space with zeroed "inactive"
neurons (activation < 0.5)

https://github.com/AntonP999/Sparse_autoencoder/blob/master/Sparse_autoencoder.ipynb

Other Autoencoders

* Variational Autoencoder (VAE)
* Beta-VAE

(a) Skin colour (b) Age/gender (c) Image saturation

»
fffﬁﬁll;’ﬁ

Figure 4: Latent factors learnt by 5-VAE on celebA: traversal of individual latents demonstrates
that 3-VAE discovered in an unsupervised manner factors that encode skin colour, transition from an
elderly male to younger female, and image saturation.

“40

Higgins, I. et al.(2016). beta-vae: Learning basic visual concepts with a constrained variational framework.

Autoencoder Summary

* Autoencoder is a neural network architecture designed to learn an
identity function in an unsupervised way to reconstruct the original
input

* Autoencoders can compress the data in a non-linear way
* Autoencoders create meaningful representations of the input

e Autoencoders with regularization strategy overcome overfitting and
improve the robustness when there are more neurons in the network
than the input

* Many different types of autoencoder structures exist to
accommodate various data representations

47

Acknowledgements

* Deep learning slides adapted from https://m2dsupsdiclass.github.io/lectures-labs/ by Olivier
Grisel and Charles Ollion (CC-By 4.0 license)

* Gil, Yolanda (Ed.) Introduction to Computational Thinking and Data Science. Available from
http://www.datascience4all.org

* https://lilianweng.github.io/posts/2018-08-12-vae/

48

https://m2dsupsdlclass.github.io/lectures-labs/
http://www.datascience4all.org/
https://lilianweng.github.io/posts/2018-08-12-vae/

@ @ These materials are released under a CC-BY
License

https://creativecommons.org/licenses/by/2.0/

You are free to:

Share — copy and redistribute the material in any medium or format Artwork taken from
Adapt — remix, transform, and build upon the material other sources is
for any purpose, even commercially. acknowledged
The licensor cannot revoke these freedoms as long as you follow the license terms. where it appears.
Artwork that is not
Under the following terms: acknowledged is by
Attribution — You must give appropriate credit, provide a link to the license, the quthor
and indicate if changes were made. You may do so in any reasonable manner,

but not in any way that suggests the licensor endorses you or your use.

Please credit as: Chiang, Yao-Yi Introduction to Spatial Artificial Intelligence. Available from
https://yaoyichi.github.io/spatial-ai.html

If you use an individual slide, please place the following at the bottom: “Credit:
https://yaoyichi.github.io/spatial-ai.html

We welcome your feedback and contributions.

Credit: http://www.datascience4all.org/

