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Dimension Reduction

• Principle Component Analysis (PCA)
• Projecting the data into a new space 

using linear transformation
• Using SVD or eigenvalue decomposition 

to find the new space
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GTTTCTCGGTTNNCCGGCGAAAGAAAAGGTCAGAAAAAGACAGCCAAAAAAAGAAAAAGCCCC
AACCACCCCCGGGGAACCTTTTGGGGTTGGAGCCTTAGAATGAGTCTTTTAAGGTTCCGGTTA
GAGCGTGAAACAGAATCTGCCGGTCTCAAAAAAGGTGCGTCTCCCGGTCAGGGAAGGCCNNC
CTTCCTCTCCGAGTCAGAGCCACNNTTTCAGACACTTAGCCCCAGAGGGAATTTGCCTTTTAGT
TGGTTAATTGGCCAAAGTCAGGGAGAGCGAGTCNNAGGGTTGGAGAAGGACAAGGCCCCTTC
CAAAAAGAGCCCCGGAATTACAAAGTCAGAGTAAGTTAAAGAGTCTCTCGGTCTCTCGGTTAGC
CCCGGAGCCAAAGAGGGTCGGCCGGTTGGGGAATTGGGGCCAGAAAGTCTTGGTTAGAGAGT
TGGTTGGCCGGGGTTCCCCAGTCAATCTCTCTTTCTTAGGGTTCCTCAATTACGGAGCCAAAAC
CAGAAAGATCCAAGGAACCGGCCGGCCAAGGCCGGAATTGGAGCCGGAGAGAGCCGGAAAG
TTCCTGGGGGTTAGAGAGGGTCGGAAAATCAGAAAATTTCCCTTTTAAGGTTCCTGTCCCTTGG
GGTTCCTTNNAATCGGTCAGTTGGCCTCGGGGGGTTTTAACCAAAAAAAGTGAGGGAGAAACA
GAGGGGGTCGGAGCGAGAGCCAACCTGAGAGTTCCAATTAGCCNNGGAACCAACCAA

DNA Sequence



Linear VS. Non-Linear

• What if the underlying low dimensional structure is not linear?
• PCA would not be able to find good representative basis vectors

• For example,
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ℎ can be a non-linear combination of 
three features
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Linear VS. Non-Linear

• What if the underlying low dimensional structure is not linear?
• PCA would not be able to find good representative basis vectors

• Neural Networks?
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Autoencoder – Encoder and Decoder

• Encoder
• Encoding the input 𝑋 into a 

hidden representation 𝑍
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Autoencoder – Encoder and Decoder

• Encoder
• Encoding the input 𝑋 into a 

hidden representation 𝑍

• Decoder
• Decoding the input 𝑋" from the 

hidden representation 𝑍
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Flatten an image 
to a vector

ZX Encoder

Encoding
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Autoencoder – Encoder and Decoder

• Encoder
• Encoding the input 𝑋 into a 

hidden representation 𝑍

• Decoder
• Decoding the input 𝑋" from the 

hidden representation 𝑍

• Usually, Dim(𝑍) < Dim(𝑋), also 
called undercomplete AE
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Autoencoder – Encoder and Decoder

• Encoder
• 𝑍 = 𝑓 𝑋 = 𝜎 𝑊𝑋 + 𝑏

• Decoder
• 𝑋" = 𝑔 𝑍 = 𝜎" 𝑊"𝑍 + 𝑏"

• 𝜎 and 𝜎! are activation 
functions
• 𝜎! depends on the input type

• e.g., if the inputs have values 
between 0 and 1, we can use a 
Sigmoid function
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For example:
W 32x64; X 64x1,000; 
Z 32x1,000; 
W' 64x32; X' 64x1,000



Autoencoder – Objective Function

• 𝑋! = 𝑓(𝑔(𝑋))
• The model is trained to minimize a certain loss function which will 

ensure that 𝑋! is close to 𝑋

• Loss function depends on the inputs
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Autoencoder – Objective Function

• When the inputs are real values, we can use Mean Square Error (MSE) 
as the loss function
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Autoencoder – Objective Function

• When the inputs are binary, we can use Binary Cross Entropy (BCE) 
as the loss function
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where 𝑚 is the number of samples, and 𝑛 is the number of features

Learn more about BCE: https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a



Link Between PCA and Autoencoder

• The encoder part of an autoencoder is equivalent to PCA if 
• the encoder is a one-layer linear transformation, no bias term
• the decoder is a one-layer linear transformation, no bias term
• using the squared error loss function 
• normalizing the input to 0 mean along each dimension
• also divide each input element by the square root of m 

• so that "𝑋! "𝑋 is the covariance matrix of the 0 mean data
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where 𝑥! is the input, 𝑗 is the feature dimension, and 𝑚 is the number of samples

https://en.wikipedia.org/wiki/Covariance_matrix



Link Between PCA and Autoencoder

• We will show that if 
• using a linear decoder and a squared error loss function 
• the optimal solution to the following objective function is obtained when 

using a linear encoder

• The above objective function is equivalent to
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Link Between PCA and Autoencoder

• The optimal solution to the problem

is given by

• By matching variables one possible solution is 
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:𝑋 = 𝑍𝑊" = 𝑈𝛴𝑉A

where 𝑈 and 𝑉 are orthogonal matrices and 𝛴 is a diagonal matrix with 
non-negative values on diagonal

𝑍 = 𝑈𝛴
𝑊" = 𝑉A

min( :𝑋 − 𝑍𝑊"
;)
,

Recall: from SVD orthogonal 
matrices:
(𝑉A𝑉 = I)
(𝑉A = 𝑉E()



Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression 
for the encoder weight 𝑊
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Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression 
for the encoder weight 𝑊
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Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression 
for the encoder weight 𝑊
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Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression 
for the encoder weight 𝑊
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Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression 
for the encoder weight 𝑊
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Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression 
for the encoder weight 𝑊
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Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression 
for the encoder weight 𝑊
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Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression 
for the encoder weight 𝑊

• Thus, 𝑍 is a linear transformation of *𝑋 and 𝑊 = 𝑉
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Link Between PCA and Autoencoder

• We have encoder 𝑊 = 𝑉
• With SVD, *𝑋 = 𝑈𝛴𝑉$, the columns of 𝑉 are the orthonormal 

eigenvectors of *𝑋$ *𝑋
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:𝑋A :𝑋 = 𝑉𝛴A𝑈A 𝑈𝛴𝑉A

:𝑋A :𝑋 = 𝑉𝛴A𝛴𝑉A (𝑉- = 𝑉.&)

:𝑋A :𝑋 𝑉 = 𝑉(𝛴A𝛴)

https://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm#:~:text=The
%20SVD%20represents%20an%20expansion,up%20the%20columns%20of%20U.



Link Between PCA and Autoencoder

• We have encoder 𝑊 = 𝑉
• With SVD, *𝑋 = 𝑈𝛴𝑉$, the columns of 𝑉 are the orthonormal 

eigenvectors of *𝑋$ *𝑋
• From PCA, we know that the projection matrix is the matrix of 

eigenvectors of the covariance matrix

• Since the entries of 𝑋 are normalized by .𝑥%& =
'
(

𝑥%& −
'
(
∑)*'( 𝑥)& ,	

*𝑋$ *𝑋 is the covariance matrix
• Thus, the linear encoder 𝑊 and the projection matrix for PCA could be 

the same 
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Link Between PCA and Autoencoder

• Nonlinear autoencoder can learn more powerful codes for a given 
dimensionality (e.g., 32), compared with linear autoencoder (PCA) 
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Original

32D Autoencoder

32D Linear 
Autoencoder



Autoencoder Applications

• Using the hidden representation 
as the input to classic machine
learning methods e.g., SVM, KNN

• The latent space can be used for 
visualization (e.g., clustering)

• Anomaly detection

26

After training, disregarding the decoder



Autoencoder Applications

• Training an autoencoder on a 
large dataset, then fine tune the 
encoder part on your own 
smaller dataset and/or provide 
your own output layers (e.g., 
classification)

27

After training, disregarding the decoder



A Fully-Connected Autoencoder on Images

28

ZEncoder Decoder

Original

Reconstructed

Code: https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L15_autoencoder/code

Flatten image to vector
Reshape 28×28 => 784 

Reshape vector to image
Reshape 784 => 28×28

Fully Connected Layer
+ LeakyReLU

784 => 32 

Fully Connected Layer
+ Sigmoid
32 => 784 

Dim=32

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L15_autoencoder/code


A Convolutional Autoencoder on Images
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One or more 
Convolutional Layers

One or more 
Conv-Transpose Layers 

ZEncoder Decoder

Original

Reconstructed

Code: https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L15_autoencoder/code

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L15_autoencoder/code


Regular and Transposed Convolution
Regular Convolution 

filter size = 3 x 3
padding = 1

stride = 1

input image size = 5 x 5
output image size =5 x 5

input image size = 5 x 5
output image size = 3 x 3

Regular Convolution 
filter size = 3 x 3

padding = 1
stride = 2

input image size = 3 x 3
output image size = 5 x 5

Transposed Convolution 
filter size = 3 x 3

padding = 1
stride = 2

Transposed Convolution 
filter size = 3 x 3

padding = 1
stride = 1

input image size = 5 x 5
output image size =5 x 5



RNN Autoencoder for Sequence Data

31
https://www.nature.com/articles/s41598-019-55320-6



GCN Autoencoder for Graph

32
https://www.nature.com/articles/s41598-021-99003-7/figures/1

• The feature decoder reconstructs the 
count matrix. 

• The graph decoder reconstructs the 
adjacency matrix. 

• The normalized count 
matrix represents the 
gene expression level 
in each cell. 

• The adjacency matrix is 
constructed by connecting each 
cell to its K nearest neighbors.

• Clustering is performed on the latent variables.

• The encoder takes the 
count matrix and the 
adjacency matrix as 
inputs and generates 
low-dimensional latent 
variables.



Regularized Autoencoder

• Autoencoders are trained to preserve as much information as 
possible of the input data with smaller vectors 
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Regularized Autoencoder

• Autoencoders are trained to preserve as much information as     
possible of the input data with smaller vectors 

• Moreover, autoencoders are to create meaningful representations of 
the input
• More neurons (i.e., hidden size) than the input size allow the network to 

compute powerful representations of the input
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Regularized Autoencoder

• However, when the hidden dimension is higher than the input
• No compression needed, also called overcomplete AE
• The network trivially learns to just copy, not learning meaningful features

35

𝑋

𝑋*

𝑍

Image by Mitesh M. Khapra 



Regularized Autoencoder

• Regularized autoencoders aim to avoid overfitting and improve 
robustness
• Denoise Autoencoder [1]
• Sparse Autoencoder [2]

36
[1] Pascal Vincent, et al. “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.". 
Journal of machine learning research 11.Dec (2010): 3371-3408.
[2] Ng, Andrew. "Sparse autoencoder." CS294A Lecture notes 72.2011 (2011): 1-19.

http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf


Denoise Autoencoder

• The input is partially corrupted by adding noises to or masking some 
values of the input vector in a stochastic manner

37Denoising AE architecture by Lilian Weng

9𝑥(&) ∼ ℳJ 9𝑥 & 𝑥 & )
where ℳ/ defines the mapping 
from the true data samples to the 
noisy or corrupted ones, e.g., 
masking noise, Gaussian noise

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/


Denoise Autoencoder

• Then the model is trained to recover the original input (note: not the 
corrupt one)

38Denoising AE architecture by Lilian Weng

min
0, 1
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(𝑥 ! − 𝑓0(𝑔1( 9𝑥 ! )))+

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/


Denoise Autoencoder – Experiment Results

• The model learns a combination of many input dimensions to 
recover the denoised version rather than to overfit one dimension, 
which helps learn robust latent representation
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Original input, corrupted data, and reconstructed data. Copyright by opendeep.org.

http://www.opendeep.org/v0.0.5/docs/tutorial-your-first-model


Sparse Autoencoder

• Sparse autoencoder forces the 
model to only have a small 
number of hidden units being 
activated at the same time

Sparse Autoencoder image by Syoya Zhou

https://medium.com/@syoya/what-happens-in-sparse-autencoder-b9a5a69da5c6


Sparse Autoencoder

• Sparse autoencoder forces the 
model to only have a small 
number of hidden units being 
activated at the same time
• Loss = reconstruction loss + 

regularization loss
• There are two ways to construct 

sparsity penalty
• L1 regularization
• KL-divergence

Sparse Autoencoder image by Syoya Zhou

https://medium.com/@syoya/what-happens-in-sparse-autencoder-b9a5a69da5c6


Sparse Autoencoder with KL-divergence

• Let’s say there are 𝑠+ neurons in the 𝑙,- hidden layer and the 
activation function for the 𝑗,- neuron in this layer is labelled as 𝑎&

+ (. )

42



Sparse Autoencoder with KL-divergence

• Let’s say there are 𝑠+ neurons in the 𝑙,- hidden layer and the 
activation function for the 𝑗,- neuron in this layer is labelled as 𝑎&

+ (. )

• The average activation of neuron 9𝜌& is expected to be a small number 
𝜌, known as sparsity parameters

43

D𝜌*
N =

1
𝑛
1
&'(

+

[𝑎*
N (𝑥(&))] ≈ 𝜌

• if the neuron is activated (e.g., has a value >0.5), 0 
otherwise

• n is the number of input sample

𝑎(
2 𝑥 ! = 1



Sparse Autoencoder with KL-divergence

• The KL-divergence measures the difference between two probability 
distributions,1 one with mean 𝜌 and the other with mean 𝜌&

+

• The hyperparameter 𝛽 controls how strong the penalty applying on 
the sparsity loss

44

𝐿OPQ = 𝐿ROQ + 𝛽1
N'(

S

1
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𝐷US(𝜌 || D𝜌*
N )

1. The probability distribution here can be viewed as Bernoulli distribution, the discrete probability distribution of a random variable which takes the value 1 
with probability p and the value 0 with probability q = p -1: https://en.wikipedia.org/wiki/Bernoulli_distribution



Sparse Autoencoder – Experiment Results

45

Original input Reconstructed data Reconstructed from latent 
space with zeroed "inactive" 

neurons (activation < 0.5)
code: https://github.com/AntonP999/Sparse_autoencoder/blob/master/Sparse_autoencoder.ipynb

https://github.com/AntonP999/Sparse_autoencoder/blob/master/Sparse_autoencoder.ipynb


Other Autoencoders

• Variational Autoencoder (VAE)
• Beta-VAE

46
Higgins, I. et al.(2016). beta-vae: Learning basic visual concepts with a constrained variational framework.



Autoencoder Summary

• Autoencoder is a neural network architecture designed to learn an 
identity function in an unsupervised way to reconstruct the original 
input 
• Autoencoders can compress the data in a non-linear way
• Autoencoders create meaningful representations of the input
• Autoencoders with regularization strategy overcome overfitting and 

improve the robustness when there are more neurons in the network 
than the input
• Many different types of autoencoder structures exist to 

accommodate various data representations
47
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