
Autoencoder
Yao-Yi Chiang

Computer Science and Engineering
University of Minnesota

yaoyi@umn.edu

1
CC-BY
Attribution

Dimension Reduction

• Principle Component Analysis (PCA)
• Projecting the data into a new space

using linear transformation
• Using SVD or eigenvalue decomposition

to find the new space

2

GTTTCTCGGTTNNCCGGCGAAAGAAAAGGTCAGAAAAAGACAGCCAAAAAAAGAAAAAGCCCC
AACCACCCCCGGGGAACCTTTTGGGGTTGGAGCCTTAGAATGAGTCTTTTAAGGTTCCGGTTA
GAGCGTGAAACAGAATCTGCCGGTCTCAAAAAAGGTGCGTCTCCCGGTCAGGGAAGGCCNNC
CTTCCTCTCCGAGTCAGAGCCACNNTTTCAGACACTTAGCCCCAGAGGGAATTTGCCTTTTAGT
TGGTTAATTGGCCAAAGTCAGGGAGAGCGAGTCNNAGGGTTGGAGAAGGACAAGGCCCCTTC
CAAAAAGAGCCCCGGAATTACAAAGTCAGAGTAAGTTAAAGAGTCTCTCGGTCTCTCGGTTAGC
CCCGGAGCCAAAGAGGGTCGGCCGGTTGGGGAATTGGGGCCAGAAAGTCTTGGTTAGAGAGT
TGGTTGGCCGGGGTTCCCCAGTCAATCTCTCTTTCTTAGGGTTCCTCAATTACGGAGCCAAAAC
CAGAAAGATCCAAGGAACCGGCCGGCCAAGGCCGGAATTGGAGCCGGAGAGAGCCGGAAAG
TTCCTGGGGGTTAGAGAGGGTCGGAAAATCAGAAAATTTCCCTTTTAAGGTTCCTGTCCCTTGG
GGTTCCTTNNAATCGGTCAGTTGGCCTCGGGGGGTTTTAACCAAAAAAAGTGAGGGAGAAACA
GAGGGGGTCGGAGCGAGAGCCAACCTGAGAGTTCCAATTAGCCNNGGAACCAACCAA

DNA Sequence

Linear VS. Non-Linear

• What if the underlying low dimensional structure is not linear?
• PCA would not be able to find good representative basis vectors

• For example,

3

ℎ can be a non-linear combination of
three features

Len(Primary Roads)

Area(Industry)

Day of Week

ℎ
Monday Sunday

Bad

Air Quality

Good

Linear VS. Non-Linear

• What if the underlying low dimensional structure is not linear?
• PCA would not be able to find good representative basis vectors

• Neural Networks?

4

Autoencoder – Encoder and Decoder

• Encoder
• Encoding the input 𝑋 into a

hidden representation 𝑍

5

Flatten an image
to a vector

ZX Encoder

Encoding

Autoencoder – Encoder and Decoder

• Encoder
• Encoding the input 𝑋 into a

hidden representation 𝑍

• Decoder
• Decoding the input 𝑋" from the

hidden representation 𝑍

6

Flatten an image
to a vector

ZX Encoder

Encoding

Z Decoder

Reshape to original
image size

X'

Decoding

Autoencoder – Encoder and Decoder

• Encoder
• Encoding the input 𝑋 into a

hidden representation 𝑍

• Decoder
• Decoding the input 𝑋" from the

hidden representation 𝑍

• Usually, Dim(𝑍) < Dim(𝑋), also
called undercomplete AE

7

Autoencoder – Encoder and Decoder

• Encoder
• 𝑍 = 𝑓 𝑋 = 𝜎 𝑊𝑋 + 𝑏

• Decoder
• 𝑋" = 𝑔 𝑍 = 𝜎" 𝑊"𝑍 + 𝑏"

• 𝜎 and 𝜎! are activation
functions
• 𝜎! depends on the input type

• e.g., if the inputs have values
between 0 and 1, we can use a
Sigmoid function

8

For example:
W 32x64; X 64x1,000;
Z 32x1,000;
W' 64x32; X' 64x1,000

Autoencoder – Objective Function

• 𝑋! = 𝑓(𝑔(𝑋))
• The model is trained to minimize a certain loss function which will

ensure that 𝑋! is close to 𝑋

• Loss function depends on the inputs

9

Autoencoder – Objective Function

• When the inputs are real values, we can use Mean Square Error (MSE)
as the loss function

10

min
#,#!, %, %!

1
𝑚𝑛

1
&'(

)

1
*'(

+

(𝑥&*" − 𝑥&*),

where 𝑚 is the number of samples, and 𝑛 is the number of features

ZEncoder Decoder

Compute pixel wise square error
by subtracting the value

Grey-scale

reconstructed original

Autoencoder – Objective Function

• When the inputs are binary, we can use Binary Cross Entropy (BCE)
as the loss function

11

min
#,#!, %, %!

1
𝑚𝑛

1
&'(

)

1
*'(

+

−(𝑥&*log 𝑥&*
" + (1 − 𝑥&*) log(1 − 𝑥&*

"))

Z

……

0

1

0

1

Encoder Decoder

1

1

0

0

where 𝑚 is the number of samples, and 𝑛 is the number of features

Learn more about BCE: https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

Link Between PCA and Autoencoder

• The encoder part of an autoencoder is equivalent to PCA if
• the encoder is a one-layer linear transformation, no bias term
• the decoder is a one-layer linear transformation, no bias term
• using the squared error loss function
• normalizing the input to 0 mean along each dimension
• also divide each input element by the square root of m

• so that "𝑋! "𝑋 is the covariance matrix of the 0 mean data

12

9𝑥&* =
1
𝑚

𝑥&* −
1
𝑚
1
/'(

)

𝑥/*

where 𝑥! is the input, 𝑗 is the feature dimension, and 𝑚 is the number of samples

https://en.wikipedia.org/wiki/Covariance_matrix

Link Between PCA and Autoencoder

• We will show that if
• using a linear decoder and a squared error loss function
• the optimal solution to the following objective function is obtained when

using a linear encoder

• The above objective function is equivalent to

13

min
", "! , $, $!

1
𝑚𝑛

6
!%&

'

6
(%&

)

(𝑥!(
* − 9𝑥!()+

min(:𝑋 − 𝑍𝑊"
;)
,

where 𝐴 , is the Frobenius Norm of matrix 𝐴, 𝐴 , ≡ ∑!%&
' ∑(%&

) |𝑎!(|+

Link Between PCA and Autoencoder

• The optimal solution to the problem

is given by

• By matching variables one possible solution is

14

:𝑋 = 𝑍𝑊" = 𝑈𝛴𝑉A

where 𝑈 and 𝑉 are orthogonal matrices and 𝛴 is a diagonal matrix with
non-negative values on diagonal

𝑍 = 𝑈𝛴
𝑊" = 𝑉A

min(:𝑋 − 𝑍𝑊"
;)
,

Recall: from SVD orthogonal
matrices:
(𝑉A𝑉 = I)
(𝑉A = 𝑉E()

Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression
for the encoder weight 𝑊

15

𝑍 = 𝑈𝛴1
2
3
4
5
6

Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression
for the encoder weight 𝑊

16

𝑍 = 𝑈𝛴
𝑍 = (:𝑋 :𝑋A)(:𝑋 :𝑋A)E(𝑈𝛴

1
2
3
4
5
6

Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression
for the encoder weight 𝑊

17

𝑍 = 𝑈𝛴
𝑍 = (:𝑋 :𝑋A)(:𝑋 :𝑋A)E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A 𝑈𝛴𝑉A𝑉𝛴A𝑈A E(𝑈𝛴 :𝑋 = 𝑍𝑊" = 𝑈𝛴𝑉A

1
2
3
4
5
6

Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression
for the encoder weight 𝑊

18

𝑍 = 𝑈𝛴
𝑍 = (:𝑋 :𝑋A)(:𝑋 :𝑋A)E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A 𝑈𝛴𝑉A𝑉𝛴A𝑈A E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A(𝑈𝛴𝛴A𝑈A)E(𝑈𝛴 (𝑉A𝑉 = I)

:𝑋 = 𝑍𝑊" = 𝑈𝛴𝑉A

1
2
3
4
5
6

Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression
for the encoder weight 𝑊

19

𝑍 = 𝑈𝛴
𝑍 = (:𝑋 :𝑋A)(:𝑋 :𝑋A)E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A 𝑈𝛴𝑉A𝑉𝛴A𝑈A E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A(𝑈𝛴𝛴A𝑈A)E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A𝑈(𝛴𝛴A)E(𝑈A𝑈𝛴 ((𝐴𝐵𝐶)E(= 𝐶E(𝐵E(𝐴E()

(𝑈A = 𝑈E()

(𝑉A𝑉 = I)
:𝑋 = 𝑍𝑊" = 𝑈𝛴𝑉A

1
2
3
4
5
6

Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression
for the encoder weight 𝑊

20

𝑍 = 𝑈𝛴
𝑍 = (:𝑋 :𝑋A)(:𝑋 :𝑋A)E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A 𝑈𝛴𝑉A𝑉𝛴A𝑈A E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A(𝑈𝛴𝛴A𝑈A)E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A𝑈(𝛴𝛴A)E(𝑈A𝑈𝛴
𝑍 = :𝑋𝑉𝛴A(𝛴A)E((𝛴)E(𝛴

((𝐴𝐵𝐶)E(= 𝐶E(𝐵E(𝐴E()
(𝑈A = 𝑈E()

(𝑉A𝑉 = I)
:𝑋 = 𝑍𝑊" = 𝑈𝛴𝑉A

1
2
3
4
5
6

Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression
for the encoder weight 𝑊

21

𝑍 = 𝑈𝛴
𝑍 = (:𝑋 :𝑋A)(:𝑋 :𝑋A)E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A 𝑈𝛴𝑉A𝑉𝛴A𝑈A E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A(𝑈𝛴𝛴A𝑈A)E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A𝑈(𝛴𝛴A)E(𝑈A𝑈𝛴
𝑍 = :𝑋𝑉𝛴A(𝛴A)E((𝛴)E(𝛴 = :𝑋𝑉

((𝐴𝐵𝐶)E(= 𝐶E(𝐵E(𝐴E()
(𝑈A = 𝑈E()

(𝑉A𝑉 = I)
:𝑋 = 𝑍𝑊" = 𝑈𝛴𝑉A

1
2
3
4
5
6

Link Between PCA and Autoencoder

• We will now show that 𝑍 is a linear encoding and find an expression
for the encoder weight 𝑊

• Thus, 𝑍 is a linear transformation of *𝑋 and 𝑊 = 𝑉
22

𝑍 = 𝑈𝛴
𝑍 = (:𝑋 :𝑋A)(:𝑋 :𝑋A)E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A 𝑈𝛴𝑉A𝑉𝛴A𝑈A E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A(𝑈𝛴𝛴A𝑈A)E(𝑈𝛴
𝑍 = :𝑋𝑉𝛴A𝑈A𝑈(𝛴𝛴A)E(𝑈A𝑈𝛴
𝑍 = :𝑋𝑉𝛴A(𝛴A)E((𝛴)E(𝛴 = :𝑋𝑉

((𝐴𝐵𝐶)E(= 𝐶E(𝐵E(𝐴E()
(𝑈A = 𝑈E()

(𝑉A𝑉 = I)
:𝑋 = 𝑍𝑊" = 𝑈𝛴𝑉A

Link Between PCA and Autoencoder

• We have encoder 𝑊 = 𝑉
• With SVD, *𝑋 = 𝑈𝛴𝑉$, the columns of 𝑉 are the orthonormal

eigenvectors of *𝑋$ *𝑋

23

:𝑋A :𝑋 = 𝑉𝛴A𝑈A 𝑈𝛴𝑉A

:𝑋A :𝑋 = 𝑉𝛴A𝛴𝑉A (𝑉- = 𝑉.&)

:𝑋A :𝑋 𝑉 = 𝑉(𝛴A𝛴)

https://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm#:~:text=The
%20SVD%20represents%20an%20expansion,up%20the%20columns%20of%20U.

Link Between PCA and Autoencoder

• We have encoder 𝑊 = 𝑉
• With SVD, *𝑋 = 𝑈𝛴𝑉$, the columns of 𝑉 are the orthonormal

eigenvectors of *𝑋$ *𝑋
• From PCA, we know that the projection matrix is the matrix of

eigenvectors of the covariance matrix

• Since the entries of 𝑋 are normalized by .𝑥%& =
'
(

𝑥%& −
'
(
∑)*'(𝑥)& ,	

*𝑋$ *𝑋 is the covariance matrix
• Thus, the linear encoder 𝑊 and the projection matrix for PCA could be

the same

24

Link Between PCA and Autoencoder

• Nonlinear autoencoder can learn more powerful codes for a given
dimensionality (e.g., 32), compared with linear autoencoder (PCA)

25

Original

32D Autoencoder

32D Linear
Autoencoder

Autoencoder Applications

• Using the hidden representation
as the input to classic machine
learning methods e.g., SVM, KNN

• The latent space can be used for
visualization (e.g., clustering)

• Anomaly detection

26

After training, disregarding the decoder

Autoencoder Applications

• Training an autoencoder on a
large dataset, then fine tune the
encoder part on your own
smaller dataset and/or provide
your own output layers (e.g.,
classification)

27

After training, disregarding the decoder

A Fully-Connected Autoencoder on Images

28

ZEncoder Decoder

Original

Reconstructed

Code: https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L15_autoencoder/code

Flatten image to vector
Reshape 28×28 => 784

Reshape vector to image
Reshape 784 => 28×28

Fully Connected Layer
+ LeakyReLU

784 => 32

Fully Connected Layer
+ Sigmoid
32 => 784

Dim=32

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L15_autoencoder/code

A Convolutional Autoencoder on Images

29

One or more
Convolutional Layers

One or more
Conv-Transpose Layers

ZEncoder Decoder

Original

Reconstructed

Code: https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L15_autoencoder/code

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L15_autoencoder/code

Regular and Transposed Convolution
Regular Convolution

filter size = 3 x 3
padding = 1

stride = 1

input image size = 5 x 5
output image size =5 x 5

input image size = 5 x 5
output image size = 3 x 3

Regular Convolution
filter size = 3 x 3

padding = 1
stride = 2

input image size = 3 x 3
output image size = 5 x 5

Transposed Convolution
filter size = 3 x 3

padding = 1
stride = 2

Transposed Convolution
filter size = 3 x 3

padding = 1
stride = 1

input image size = 5 x 5
output image size =5 x 5

RNN Autoencoder for Sequence Data

31
https://www.nature.com/articles/s41598-019-55320-6

GCN Autoencoder for Graph

32
https://www.nature.com/articles/s41598-021-99003-7/figures/1

• The feature decoder reconstructs the
count matrix.

• The graph decoder reconstructs the
adjacency matrix.

• The normalized count
matrix represents the
gene expression level
in each cell.

• The adjacency matrix is
constructed by connecting each
cell to its K nearest neighbors.

• Clustering is performed on the latent variables.

• The encoder takes the
count matrix and the
adjacency matrix as
inputs and generates
low-dimensional latent
variables.

Regularized Autoencoder

• Autoencoders are trained to preserve as much information as
possible of the input data with smaller vectors

33

Regularized Autoencoder

• Autoencoders are trained to preserve as much information as
possible of the input data with smaller vectors

• Moreover, autoencoders are to create meaningful representations of
the input
• More neurons (i.e., hidden size) than the input size allow the network to

compute powerful representations of the input

34

Regularized Autoencoder

• However, when the hidden dimension is higher than the input
• No compression needed, also called overcomplete AE
• The network trivially learns to just copy, not learning meaningful features

35

𝑋

𝑋*

𝑍

Image by Mitesh M. Khapra

Regularized Autoencoder

• Regularized autoencoders aim to avoid overfitting and improve
robustness
• Denoise Autoencoder [1]
• Sparse Autoencoder [2]

36
[1] Pascal Vincent, et al. “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.".
Journal of machine learning research 11.Dec (2010): 3371-3408.
[2] Ng, Andrew. "Sparse autoencoder." CS294A Lecture notes 72.2011 (2011): 1-19.

http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf

Denoise Autoencoder

• The input is partially corrupted by adding noises to or masking some
values of the input vector in a stochastic manner

37Denoising AE architecture by Lilian Weng

9𝑥(&) ∼ ℳJ 9𝑥 & 𝑥 &)
where ℳ/ defines the mapping
from the true data samples to the
noisy or corrupted ones, e.g.,
masking noise, Gaussian noise

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/

Denoise Autoencoder

• Then the model is trained to recover the original input (note: not the
corrupt one)

38Denoising AE architecture by Lilian Weng

min
0, 1

1
𝑛
6
!%&

)

(𝑥 ! − 𝑓0(𝑔1(9𝑥 !)))+

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/

Denoise Autoencoder – Experiment Results

• The model learns a combination of many input dimensions to
recover the denoised version rather than to overfit one dimension,
which helps learn robust latent representation

39

Original input, corrupted data, and reconstructed data. Copyright by opendeep.org.

http://www.opendeep.org/v0.0.5/docs/tutorial-your-first-model

Sparse Autoencoder

• Sparse autoencoder forces the
model to only have a small
number of hidden units being
activated at the same time

Sparse Autoencoder image by Syoya Zhou

https://medium.com/@syoya/what-happens-in-sparse-autencoder-b9a5a69da5c6

Sparse Autoencoder

• Sparse autoencoder forces the
model to only have a small
number of hidden units being
activated at the same time
• Loss = reconstruction loss +

regularization loss
• There are two ways to construct

sparsity penalty
• L1 regularization
• KL-divergence

Sparse Autoencoder image by Syoya Zhou

https://medium.com/@syoya/what-happens-in-sparse-autencoder-b9a5a69da5c6

Sparse Autoencoder with KL-divergence

• Let’s say there are 𝑠+ neurons in the 𝑙,- hidden layer and the
activation function for the 𝑗,- neuron in this layer is labelled as 𝑎&

+ (.)

42

Sparse Autoencoder with KL-divergence

• Let’s say there are 𝑠+ neurons in the 𝑙,- hidden layer and the
activation function for the 𝑗,- neuron in this layer is labelled as 𝑎&

+ (.)

• The average activation of neuron 9𝜌& is expected to be a small number
𝜌, known as sparsity parameters

43

D𝜌*
N =

1
𝑛
1
&'(

+

[𝑎*
N (𝑥(&))] ≈ 𝜌

• if the neuron is activated (e.g., has a value >0.5), 0
otherwise

• n is the number of input sample

𝑎(
2 𝑥 ! = 1

Sparse Autoencoder with KL-divergence

• The KL-divergence measures the difference between two probability
distributions,1 one with mean 𝜌 and the other with mean 𝜌&

+

• The hyperparameter 𝛽 controls how strong the penalty applying on
the sparsity loss

44

𝐿OPQ = 𝐿ROQ + 𝛽1
N'(

S

1
*'(

T"

𝐷US(𝜌 || D𝜌*
N)

1. The probability distribution here can be viewed as Bernoulli distribution, the discrete probability distribution of a random variable which takes the value 1
with probability p and the value 0 with probability q = p -1: https://en.wikipedia.org/wiki/Bernoulli_distribution

Sparse Autoencoder – Experiment Results

45

Original input Reconstructed data Reconstructed from latent
space with zeroed "inactive"

neurons (activation < 0.5)
code: https://github.com/AntonP999/Sparse_autoencoder/blob/master/Sparse_autoencoder.ipynb

https://github.com/AntonP999/Sparse_autoencoder/blob/master/Sparse_autoencoder.ipynb

Other Autoencoders

• Variational Autoencoder (VAE)
• Beta-VAE

46
Higgins, I. et al.(2016). beta-vae: Learning basic visual concepts with a constrained variational framework.

Autoencoder Summary

• Autoencoder is a neural network architecture designed to learn an
identity function in an unsupervised way to reconstruct the original
input
• Autoencoders can compress the data in a non-linear way
• Autoencoders create meaningful representations of the input
• Autoencoders with regularization strategy overcome overfitting and

improve the robustness when there are more neurons in the network
than the input
• Many different types of autoencoder structures exist to

accommodate various data representations
47

Acknowledgements

• Deep learning slides adapted from https://m2dsupsdlclass.github.io/lectures-labs/ by Olivier
Grisel and Charles Ollion (CC-By 4.0 license)

• Gil, Yolanda (Ed.) Introduction to Computational Thinking and Data Science. Available from
http://www.datascience4all.org

• https://lilianweng.github.io/posts/2018-08-12-vae/

48

https://m2dsupsdlclass.github.io/lectures-labs/
http://www.datascience4all.org/
https://lilianweng.github.io/posts/2018-08-12-vae/

These materials are released under a CC-BY
License

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

https://creativecommons.org/licenses/by/2.0/

Please credit as: Chiang, Yao-Yi Introduction to Spatial Artificial Intelligence. Available from
https://yaoyichi.github.io/spatial-ai.html

If you use an individual slide, please place the following at the bottom: “Credit:
https://yaoyichi.github.io/spatial-ai.html

We welcome your feedback and contributions.

Artwork taken from
other sources is
acknowledged
where it appears.
Artwork that is not
acknowledged is by
the author.

Credit: http://www.datascience4all.org/

