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Sequences

• Sequences are everywhere
• Natural language

• “This morning I took my cat for a walk”

• Audio and video

• Sensor observations (e.g., air quality, 
traffic, noise)
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Cloud Mask from Weather4cast

Moving MNIST

https://www.iarai.ac.at/weather4cast/2021-competition/challenge/
http://www.cs.toronto.edu/~nitish/unsupervised_video/


Sequence Modeling

• Sequence modeling is the task of predicting what comes next
• E.g., “This morning I took my cat for a walk ”

• E.g., given historical air quality, forecast air quality in next couple of hours
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A Sequence Modeling Example
Predict the Next Word

• Idea #1: Use a fixed window
“This morning I took my cat for a walk ”
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A Sequence Modeling Example
Predict the Next Word

• Idea #1: Use a fixed window
“This morning I took my cat for a walk ”

• Limitation: Cannot model long-term dependencies
• E.g., “France is where I grew up, but I now live in Boston. I speak fluent ___.” 
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A Sequence Modeling Example
Predict the Next Word

• Idea #1: Use a fixed window
“This morning I took my cat for a walk ”

• Limitation: Cannot model long-term dependencies
• E.g., “France is where I grew up, but I now live in Boston. I speak fluent ___.” 

• We need information from the distant past to accurately predict the 
correct word
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A Sequence Modeling Example
Predict the Next Word

• Idea #2: Use entire sequence as set of counts
“This morning I took my cat for a walk ”
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A Sequence Modeling Example
Predict the Next Word

• Idea #2: Use entire sequence as set of counts
“This morning I took my cat for a walk ”

• Bag-of-words model
• Define a vocabulary and initialize a zero vector where each element 

represents for each word
• Compute word frequency and update the correspond position in the vector

[0 1 0 0 1 0 1 … … 0 0 1 1 0 0 0 1 0 ]
• Use the vector for prediction
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A Sequence Modeling Example
Predict the Next Word

• Idea #2: Use entire sequence as set of counts
“This morning I took my cat for a walk ”

• Limitation: Counts don’t preserve order 
• “The food was good, not bad at all.” VS. “The food was bad, not good at all.”

• We need to preserve the information about order
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A Sequence Modeling Example
Predict the Next Word

• Idea #3: Use a big fixed window 
“This morning I took my cat for a walk ”

• One-hot encoding
[1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 … …]

• Use the one-hot encoding vector for prediction
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A Sequence Modeling Example
Predict the Next Word

• Idea #3: Use a big fixed window 
“This morning I took my cat for a walk ”

• Limitation: Each of these inputs has a separate parameter
• “I took my cat this morning for a walk”

[0 0 0 1 0 0 0 … … 1 0 0 0 0 0 0 0 0 0 0 0 0 1 … …]

• Things we learn about the sequence should be applicable when they 
appear elsewhere in the sequence
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Sequence Modeling

• To model sequences, we need to:
• Handle variable-length sequences 
• Track long-term dependencies 
• Maintain information about order
• Share parameters across the sequence 

• Solution:
• Recurrent Neural Networks (RNNs) 
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Standard Feed-Forward Neural Network 
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One to One
“Vanilla” neural network 



Recurrent Neural Networks
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One to One
“Vanilla” neural network 

Many to One
Sentiment Classification



Recurrent Neural Networks
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One to One
“Vanilla” neural network 

Many to One
Sentiment Classification

Many to Many
Music Generation

... and many other 
architectures and 

applications 



A Recurrent Neural Network (RNN)
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A Recurrent Neural Network (RNN)

• Apply a recurrence relation at every time 
step to process a sequence: 

ℎ! = 𝑓𝑾 ℎ!#$, 𝑥!

Note: the same function and set of parameters are used at 
every time step 

17

cell state

a function 
parameterized 

by 𝑾

old state

current 
input

!𝑦!

𝑥! input vector

output vector

https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html



RNN: State Update and Output 

ℎ! = 𝑓𝑾 ℎ!#$, 𝑥!

• Update hidden state, 𝑓𝑾
ℎ! = tanh(𝑾𝒉𝒉ℎ!$% +𝑾𝒙𝒉𝑥!)

• Compute output vector
!𝑦! = 𝑾𝒉𝒚ℎ!
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RNN: Computational Graph Across Time 

• Represent as computational graph unrolled across time 
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RNN: Computational Graph Across Time 

• Represent as computational graph unrolled across time 
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RNN: Computational Graph Across Time 

• Represent as computational graph unrolled across time 
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RNN: Computational Graph Across Time 

• Represent as computational graph unrolled across time 
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RNN: Computational Graph Across Time 

• Re-use the same weight matrices at every time step 
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RNN: Computational Graph Across Time 

• Compute the loss 𝐿! by comparing '𝑦! and 𝑦! (𝑦! is ground truth)
• E.g., 𝐿! = (!𝑦! − 𝑦!)(
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RNN: Computational Graph Across Time 
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• Total loss

𝐿!

𝐿 =1
!*%

+
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RNN: Backpropagation Through Time

• For backpropagation, we need to compute the gradients w.r.t. 𝑊%&, 
𝑊%%, 𝑊'%
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𝜕𝐿
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RNN: Backpropagation Through Time

Computing the gradient involves many multiplications (and repeated 𝑓;) 
• When 𝑤< changes (in a small amount), how much (and direction) would  
𝐿 change?
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For example, 

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html

ℎ! = tanh(𝑾𝒙𝒉𝑥! +𝑾𝒉𝒉ℎ!)$)

𝜕ℎ!
𝜕𝑤""

=
𝜕𝑓(𝑥! , ℎ!)$ , 𝑤"")

𝜕𝑤""
=
𝜕𝑓(𝑥! , ℎ!)$ , 𝑤"")

𝜕ℎ!)$

𝜕ℎ!)$
𝜕𝑤""

.



Gradient Flow: Exploding Gradients 
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Case 1: Many values are > 1
Exploding gradients 

Trick : Gradient clipping to 
scale big gradients 

Case 2: Many values are < 1
Vanishing gradients 

Trick 1: Activation functions 
Trick 2: Weight initialization 
Trick 3: Network architecture 



Gradient Flow: Vanishing Gradients 
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Case 1: Many values are > 1
Exploding gradients 

Trick 1: Gradient clipping to 
scale big gradients 

Case 2: Many values are < 1
Vanishing gradients 

Trick 1: Activation functions 
Trick 2: Network architecture 



Vanishing Gradients

What causes vanishing gradients?
Multiply many small numbers together 

Further back time steps would have smaller 
and smaller gradients 

Fail to capture long-term dependencies 
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Trick 1: Activation Functions
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Using ReLU can prevent 𝑓;
from shrinking the gradients 
when 𝑥 > 0



Trick 2: Network Architecture – Gated Cells

• Use a more complex recurrent unit with gates to control what 
information is passed through 

• Long Short-Term Memory (LSTM) networks rely on gated cells to track 
information throughout many time steps. 
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Standard RNNs

• In a standard RNN, recurrent modules contain simple computation

34
https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Long Short-Term Memory (LSTM) 

• In an LSTM network, recurrent modules contain gated cells that 
control the information flow [Hochreiter et al., 1997] 
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Long Short-Term Memory (LSTM) 

• Besides hidden state ℎ! (same as RNN), LSTM maintains a cell state 𝑪𝒕
where it’s easy for information to flow
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Long Short-Term Memory (LSTM) 

• Information is added or removed to cell state through structures 
called gates

37

Gates optionally let information through, via a 
sigmoid layer and pointwise multiplication 



LSTM: Forget Irrelevant Information 

𝑓! = 𝜎 𝑊) ℎ!#$, 𝑥! + 𝑏)

• Concatenate previous hidden state 
and current input

• When 𝜎 outputs 0, the network will 
“completely forget” the information 
from 𝑐!$%

• When 𝜎 outputs 1, “completely keep” 
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LSTM: Forget Irrelevant Information 

𝑓! = 𝜎 𝑊) ℎ!#$, 𝑥! + 𝑏)

• Concatenate previous hidden state 
and current input

• When 𝜎 outputs 0, the network will 
“completely forget” the information 
from 𝑐!$%

• When 𝜎 outputs 1, “completely keep” 

39https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21



LSTM: Add New Information
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𝑖! = 𝜎 𝑊* ℎ!#$, 𝑥! + 𝑏*
�̃�! = tanh 𝑊+ ℎ!#$, 𝑥! + 𝑏+

• 𝜎 decides what values to update
• tanh generates “candidate values” 

that could be added to cell state



LSTM: Add New Information
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𝑖! = 𝜎 𝑊* ℎ!#$, 𝑥! + 𝑏*
�̃�! = tanh 𝑊+ ℎ!#$, 𝑥! + 𝑏+

• 𝜎 decides what values to update
• tanh generates “candidate values” 

that could be added to cell state

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21



LSTM: Update Cell State 
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𝑐! = 𝑓! ∗ 𝑐!#$ + 𝑖! ∗ �̃�!

• 𝑓! ∗ 𝑐!$% is to apply forget gate to 
previous cell state 

• 𝑖! ∗ �̃�! is to apply input gate to add 
new candidate values to cell state



LSTM: Update Cell State 
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𝑐! = 𝑓! ∗ 𝑐!#$ + 𝑖! ∗ �̃�!

• 𝑓! ∗ 𝑐!$% is to apply forget gate to 
previous cell state 

• 𝑖! ∗ �̃�! is to apply input gate to add 
new candidate values to cell state

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21



LSTM: Output Filtered Version of Cell State 
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𝑜! = 𝜎 𝑊, ℎ!#$, 𝑥! + 𝑏,
ℎ! = 𝑜! ∗ tanh 𝑐!

• 𝜎 decides what parts of the cell state to 
output as current hidden state

• tanh squashes values between -1 and 1
• 𝑜! ∗ tanh 𝑐! is to output filtered 

version of cell state 
• ℎ! will be used to compute !𝑦!

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21



LSTM: Output Filtered Version of Cell State 
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𝑜! = 𝜎 𝑊, ℎ!#$, 𝑥! + 𝑏,
ℎ! = 𝑜! ∗ tanh 𝑐!

• 𝜎 decides what parts of the current 
state and input to output as current 
hidden state

• tanh squashes values between -1 and 1
• 𝑜! ∗ tanh 𝑐! is to output filtered 

version of cell state 
• ℎ! will be used to compute !𝑦!https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-

step-explanation-44e9eb85bf21



LSTM: Feed Forward
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𝑓! = 𝜎 𝑊D ℎ!$%, 𝑥! + 𝑏D
𝑖! = 𝜎 𝑊E ℎ!$%, 𝑥! + 𝑏E

�̃�! = tanh 𝑊F ℎ!$%, 𝑥! + 𝑏F
𝑐! = 𝑓! ⊙ 𝑐!$% + 𝑖! ⊙ �̃�!
𝑜! = 𝜎 𝑊G ℎ!$%, 𝑥! + 𝑏G

ℎ! = 𝑜! ⊙ tanh 𝑐!

𝑎! = 𝑊"! 0 ℎ#$% +𝑊&! 0 𝑥# + 𝑏!
𝑎' = 𝑊"' 0 ℎ#$% +𝑊&' 0 𝑥# + 𝑏'
𝑎( = 𝑊"( 0 ℎ#$% +𝑊&( 0 𝑥# + 𝑏(
𝑎) = 𝑊") 0 ℎ#$% +𝑊&) 0 𝑥# + 𝑏)

𝑓# = 𝜎 𝑎!
𝑖# = 𝜎 𝑎'

�̃�# = tanh 𝑎(
𝑐# = 𝑓#⊙ 𝑐#$% + 𝑖#⊙ �̃�#

𝑜# = 𝜎 𝑎)
ℎ# = 𝑜#⊙ tanh 𝑐#

Rewrite the functions 
for computing 

backpropagation

⊙ is element-wise multiplication



LSTM: Backpropagation Through Time 

• Compute gradient w.r.t. hidden state
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𝜕𝐿!
𝜕ℎ!

=
𝜕𝐿!
𝜕 6𝑦!

I
𝜕 6𝑦!
𝜕ℎ!

𝑎* = 𝑊"* I ℎ!)$ +𝑊+* I 𝑥! + 𝑏*
𝑎, = 𝑊", I ℎ!)$ +𝑊+, I 𝑥! + 𝑏,
𝑎- = 𝑊"- I ℎ!)$ +𝑊+- I 𝑥! + 𝑏-
𝑎. = 𝑊". I ℎ!)$ +𝑊+. I 𝑥! + 𝑏.

𝑓! = 𝜎 𝑎*
𝑖! = 𝜎 𝑎,
̃𝑐! = tanh 𝑎-

𝑐! = 𝑓! ⊙ 𝑐!)$ + 𝑖! ⊙ ̃𝑐!
𝑜! = 𝜎 𝑎.

ℎ! = 𝑜! ⊙ tanh 𝑐!

This depends on the output function
6𝑦! = output_function(ℎ!), e.g., fully 
connected layer

https://cs231n.github.io/optimization-2/



LSTM: Backpropagation Through Time 

• Compute gradient w.r.t. output gate
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• /0
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= /0
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I /"!
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/2"

= /0
/1!

I /1!
/2"
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I tanh 𝑐! I o!(1 − o!)

• /0
/5#"

= /0
/2"

I /2"
/5#"

= /0
/2"

I ℎ!)$

• /0
/6"

= /0
/2"

I /2"
/6"

= /0
/2"

• /0
/5$"

= /0
/2"

I /2"
/5$"

= /0
/2"

I 𝑥!

𝑎* = 𝑊"* I ℎ!)$ +𝑊+* I 𝑥! + 𝑏*
𝑎, = 𝑊", I ℎ!)$ +𝑊+, I 𝑥! + 𝑏,
𝑎- = 𝑊"- I ℎ!)$ +𝑊+- I 𝑥! + 𝑏-
𝑎. = 𝑊". I ℎ!)$ +𝑊+. I 𝑥! + 𝑏.

𝑓! = 𝜎 𝑎*
𝑖! = 𝜎 𝑎,
̃𝑐! = tanh 𝑎-

𝑐! = 𝑓! ⊙ 𝑐!)$ + 𝑖! ⊙ ̃𝑐!
𝑜! = 𝜎 𝑎.

ℎ! = 𝑜! ⊙ tanh 𝑐!

e.g., when 𝑊".
changes for a small 
amount (𝜕𝑊".), how 
much would 𝐿 change 
(and the change 
direction)?  



LSTM: Backpropagation Through Time 

• Compute gradient w.r.t. cell state
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/7!

= /0
/"!

I /"!
/7!

= /0
/"!

I 𝑜! I (1 − tanh 𝑐! 8)

• /0
/2%

= /0
/ ̃7!

I / ̃7!
/2%

= /0
/7!

I 𝑖! I
3(;<=> 2% )

32%
= /0

/7!
I 𝑖! I (1 − ̃𝑐!

8)

• /0
/5#%

= /0
/2%

I
/2%
/5#%

= /0
/2%

I ℎ!)$

• /0
/6%

= /0
/2%

I
/2%
/6%

= /0
/2%

• /0
/5$%

= /0
/2%

I
/2%
/5$%

= /0
/2%

I 𝑥!

𝑎* = 𝑊"* I ℎ!)$ +𝑊+* I 𝑥! + 𝑏*
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LSTM: Backpropagation Through Time 

• Compute gradient w.r.t. input gate
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LSTM: Backpropagation Through Time 

• Compute gradient w.r.t. forget gate

51

• /0
/*!

= /0
/7!

I /7!
/*!

= /0
/7!

I 𝑐!)$

• /0
/5#'

= /0
/2'

I
/2'
/5#'

= /0
/2'

I ℎ!)$

• /0
/6'

= /0
/2'

I
/2'
/6'

= /0
/2'

• /0
/5$'

= /0
/2'

I
/2'
/5$'

= /0
/2'

I 𝑥!

𝑎* = 𝑊"* I ℎ!)$ +𝑊+* I 𝑥! + 𝑏*
𝑎, = 𝑊", I ℎ!)$ +𝑊+, I 𝑥! + 𝑏,
𝑎- = 𝑊"- I ℎ!)$ +𝑊+- I 𝑥! + 𝑏-
𝑎. = 𝑊". I ℎ!)$ +𝑊+. I 𝑥! + 𝑏.

𝑓! = 𝜎 𝑎*
𝑖! = 𝜎 𝑎,
̃𝑐! = tanh 𝑎-

𝑐! = 𝑓! ⊙ 𝑐!)$ + 𝑖! ⊙ ̃𝑐!
𝑜! = 𝜎 𝑎.

ℎ! = 𝑜! ⊙ tanh 𝑐!

• /0
/2'

= /0
/*!

I /*!
/2'

= /0
/7!

I 𝑐!)$ I
3 4 2'

32'

= /0
/7!

I 𝑐!)$ I 𝜎 𝑎* 1 − 𝜎 𝑎* = /0
/7!

I 𝑐!)$ I 𝑓!(1 − 𝑓!)



LSTM: Backpropagation Through Time 

• These computation for backpropagation 
will be calculated 𝑻 times (the number of 
time steps)
• The weights will be updated using the 

accumulated gradient w.r.t. each weight 
for all time steps

• For example, @A
@B!"

= ∑!C$D @A
@B!"

#

𝑊%) += 𝛼 ∗ @A
@B!"
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𝑓! = 𝜎 𝑎*
𝑖! = 𝜎 𝑎,
̃𝑐! = tanh 𝑎-

𝑐! = 𝑓! ⊙ 𝑐!)$ + 𝑖! ⊙ ̃𝑐!
𝑜! = 𝜎 𝑎.

ℎ! = 𝑜! ⊙ tanh 𝑐!
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• Vanilla RNNs
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LSTM: Mitigate Vanishing Gradient

• Vanilla RNNs

• LSTM

• Recall that in 
• Vanilla RNNS, ℎ! = tanh(𝑾𝒉𝒉ℎ!$% +𝑾𝒙𝒉𝑥!)
• LSTM, ℎ! = 𝑜! ⊙ tanh 𝑐! and 𝑐! = 𝑓! ⊙ 𝑐!$% + 𝑖! ⊙ �̃�!
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LSTM: Mitigate Vanishing Gradient

• LSTM

55
https://medium.datadriveninvestor.com/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577

Note that the notation is 
different from previous 
slides
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• LSTM
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𝑎! = 𝑊"! ' ℎ#$% +𝑊&! ' 𝑥# + 𝑏!
𝑎' = 𝑊"' ' ℎ#$% +𝑊&' ' 𝑥# + 𝑏'
𝑎( = 𝑊"( ' ℎ#$% +𝑊&( ' 𝑥# + 𝑏(
𝑎) = 𝑊") ' ℎ#$% +𝑊&) ' 𝑥# + 𝑏)

𝑓# = 𝜎 𝑎!
𝑖# = 𝜎 𝑎'

�̃�# = tanh 𝑎(
𝑐# = 𝑓# ⊙𝑐#$% + 𝑖# ⊙ �̃�#

𝑜# = 𝜎 𝑎)
ℎ# = 𝑜# ⊙ tanh 𝑐#
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• LSTM

57
https://medium.datadriveninvestor.com/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577



LSTM: Mitigate Vanishing Gradient

• LSTM

• Addictive function (rather than multiplying) and Bt (forget gate vector) 
help mitigate the gradient vanishing problem
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LSTM: Key Concepts 

• Maintain a separate cell state from what is outputted 

• Use gates to control the flow of information
• Forget gate gets rid of irrelevant information
• Selectively updates cell state
• Output gate returns a filtered version of the cell state 

• LSTM can mitigate vanishing gradient problem
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