Recurrent Neural Networks |

Yao-Yi Chiang
Computer Science and Engineering
University of Minnesota
yaoyi@umn.edu

Attribution BY



Sequences

ana
2019340T020000

Lpoo

0.B75

* Sequences are everywhere

* Natural language
* “This morning | took my cat for a walk”

0.750

0625

0500

0375

0258

0125

0.000

* Audio and video Cloud Mask from Weather4cast

» Sensor observations (e.g., air quality, 3
traffic, noise) é)

150

=
(=]
o

PM, ¢ values
S

Moving MNIST

o

Aug 15 Aug 20 Aug 25 Aug 30

Time 2


https://www.iarai.ac.at/weather4cast/2021-competition/challenge/
http://www.cs.toronto.edu/~nitish/unsupervised_video/

Sequence Modeling

* Sequence modeling is the task of predicting what comes next
* E.g., “This morning | took my cat for a walk ”

* E.g., given historical air quality, forecast air quality in next couple of hours

What is the air
quality in future?
150

100

50

PM, 5 values

Aug 15 Aug 20 Aug 25 Aug 30

Time



A Sequence Modeling Example
Predict the Next Word

e |dea #1: Use a fixed window

“This morning | took my cat for a walk ”



A Sequence Modeling Example
Predict the Next Word

e |dea #1: Use a fixed window

“This morning | took my cat for a walk ”

* Limitation: Cannot model long-term dependencies
* E.g., “France is where | grew up, but | now live in Boston. | speak fluent .

7



A Sequence Modeling Example
Predict the Next Word

e |dea #1: Use a fixed window

“This morning | took my cat for a walk ”

* Limitation: Cannot model long-term dependencies
* E.g., “France is where | grew up, but | now live in Boston. | speak fluent .

7

 We need information from the distant past to accurately predict the
correct word



A Sequence Modeling Example
Predict the Next Word

 |dea #2: Use entire sequence as set of counts

morning | took cat walk ”



A Sequence Modeling Example
Predict the Next Word

 |dea #2: Use entire sequence as set of counts

o

morning | took cat walk ”

* Bag-of-words model

* Define a vocabulary and initialize a zero vector where each element
represents for each word

* Compute word frequency and update the correspond position in the vector
[0100101.... 001100010]

* Use the vector for prediction
Here 1 is the count for the work “2”



A Sequence Modeling Example
Predict the Next Word

 |dea #2: Use entire sequence as set of counts

o

morning | took cat walk ”

 Limitation: Counts don’t preserve order
* “The food was good, not bad at all.” VS. “The food was bad, not good at all.”

* We need to preserve the information about order



A Sequence Modeling Example
Predict the Next Word

 |dea #3: Use a big fixed window

“This morning | took my cat for a walk ”

* One-hot encoding

[ 0001000..... ]
|

» Use the one-hot encoding vector for prediction



A Sequence Modeling Example
Predict the Next Word

 |dea #3: Use a big fixed window

“This morning | took my cat for a walk ”

 Limitation: Each of these inputs has a separate parameter
* “l took my cat this morning for a walk”

[0001000....10000000000001..... ]
|

* Things we learn about the sequence should be applicable when they
appear elsewhere in the sequence



Sequence Modeling

* To model sequences, we need to:
* Handle variable-length sequences
* Track long-term dependencies

* Maintain information about order
» Share parameters across the sequence ‘[ RNN

 Solution: 1
* Recurrent Neural Networks (RNNs)



Standard Feed-Forward Neural Network

<<

X

One to One
“Vanilla” neural network



Recurrent Neural Networks

<<

B0
[T 1

One to One Many to One
“Vanilla” neural network Sentiment Classification

X



Recurrent Neural Networks

<2

I | | | nd many other
OO0 DO s
11 1T

One to One Many to One Many to Many
“Vanilla” neural network Sentiment Classification Music Generation




A Recurrent Neural Network (RNN)

Y output vector

Xt input vector




A Recurrent Neural Network (RNN)

* Apply a recurrence relation at every time

step to process a sequence:

old state

hy = fw(:

ht—]

,Xt)

current

input

Note: the same function and set of parameters are used at

every time step

https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html|

Y output vector

A

RNN

recurrent cell t

I

Xt input vector



RNN: State Update and Output

old state
B yt output vector
he = fw(he—q)|xe)
current
input
| —‘ RNN
o Update hidden state, fW recurrent cell t
he = tanh(Wpphe_y + Wepxy) I
tanh(z)
U X¢  input vector

* Compute output vector
P = Whyhe > T




RNN: Computational Graph Across Time

* Represent as computational graph unrolled across time




RNN: Computational Graph Across Time

* Represent as computational graph unrolled across time




RNN: Computational Graph Across Time

* Represent as computational graph unrolled across time

A A ~

Yt Yo Y1

T =k

Xt X0 X1




RNN: Computational Graph Across Time

* Represent as computational graph unrolled across time




RNN: Computational Graph Across Time

* Re-use the same weight matrices at every time step




RNN: Computational Graph Across Time

* Compute the loss L; by comparing ¥, and y; (y; is ground truth)

*Eg, L= (Vr — J’t)z

—> Forward pass

Ly Ly L, L,
t t t t
Ve Yo 91 Y2 Jt
RNN —_
Whp Whn J Whn
thT Win T Win T Win
Xt X0 X1 X2 Xt



RNN: Computational Graph Across Time

T
* Total loss L = ELt
t=1

— L
—> Forward pass — /

T Ly 0 L,

~

Yt

t t t
Yo 91 2 "
‘ Why : whyI whyT Why :
I‘{ RNN i—‘ — H ] >
Whn Whn J Whn
Win thI thT Win
X0 X1 X2 " un

Xt




RNN: Backpropa

* For backpropagation, we need
Whi,» Wxn

gation Through Time

to compute the gradients w.r.t. Wp,,,

— Forward pass g

<+—— Backward pass Ly Ly L, L
t] t] t t]

Ve Yo y1 Y2 Ve

| wll  wf] ] "

RNN = > >
) Whn{_ ) Whn{_ Y Whn

thT w hT thT Win

Xt X0 X1 X2 Xt

26



RNN: Backpropagation Through Time

¥ P A 4 v @
hy — : . h,
) Wha{ ) Whn{ P Whn @
wxh I th I th T wxh T
X0 X1 X2 "aw Xt

Computing the gradient involves many multiplications (and repeated f”)

* When wy, changes (in a small amount), how much (and direction) would

L change? .
For example, 9% _1\ 009
aWh T aWhh ht = tanh(thxt + Whhht—l)
t=1
T
_ l l(ye, 9¢) 0g(he, why)| Ok, dhy _ of (x¢, he—1, Whp) _ Of (x¢, he—1, Whp) Ohe—q
T ayt aht aWhh aWhh aWhh aht_l aWhh .
t=1 27

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html|



Gradient Flow: Exploding Gradients

Case 1: Many values are > 1
Exploding gradients

Trick : Gradient clipping to
scale big gradients

J

o

th T

Xt

29



Gradient Flow: Vanishing Gradients

\‘ 4
Wi j ht J

\
th T

Xt

N\

Case 2: Many values are< 1
Vanishing gradients

Trick 1: Activation functions
Trick 2: Network architecture

~

J

30



Vanishing Gradients

“The clouds are inthe ___ "
What causes vanishing gradients? ; 5 ; @ :
Yo Y1 V2 Va
Multiply many small numbers together t

t ot
| [H@ LHLHL]

Further back time steps would have smaller

and smaller gradients “l grew up in France, ... and | | speak fluent___ "
\ Yo 91 " Ve Fre1
Fail to capture long-term dependencies { N i . H ]
t t t t

31



10

09

08

0.7

0.6

0.5

04

0.2

0.1

00~

-4

Trick 1: Activation Functions

Sigmoid 1
o(z) = 1+i—:c
iemoid derivative tanh 1‘
) Oold derivative t anh(:z:) o ‘ 5
RelLU
max (0, x)

RelLU derivative

Using ReLU can prevent f'
from shrinking the gradients
whenx > 0




Trick 2: Network Architecture — Gated Cells

* Use a more complex recurrent unit with gates to control what
information is passed through

gated cell
ST CIRUL e

* Long Short-Term Memory (LSTM) networks rely on gated cells to track
information throughout many time steps.



Standard RNNs

* In a standard RNN, recurrent modules contain simple computation

|:|Q—>>—>—<

Neural Network Pointwise Vector

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Layer Operation  Transfer

Concatenate Copy



Long Short-Term Memory (LSTM)

* In an LSTM network, recurrent modules contain gated cells that
control the information flow [Hochreiter et al., 1997]

Neural Network Pointwise Vector

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Layer Operation  Transfer

Concatenate Copy



Long Short-Term Memory (LSTM)

* Besides hidden state h; (same as RNN), LSTM maintains a cell state C,
where it’s easy for information to flow




Long Short-Term Memory (LSTM)

* Information is added or removed to cell state through structures
called gates

he 3

@ A
——— o]
tanh
X X
(g)(tanh ] (o] _

Gates optionally let information through, via a
sigmoid layer and pointwise multiplication

v

/




LSTM: Forget Irrelevant Information

ft = U(Wf[ht—1»xt] + bf)

* Concatenate previous hidden state
and current input

* When o outputs 0, the network will
“completely forget” the information
from cy_q

 When o outputs 1, “completely keep”



LSTM: Forget Irrelevant Information

I

ft = U(Wf[ht—pxt] + bf)

Q previous cell state

° forget gate output

* Concatenate previous hidden state
and current input

* When o outputs 0, the network will
“completely forget” the information
from cy_q

 When o outputs 1, “completely keep”

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-

step-explanation-44e9eb85bf21

39



LSTM: Add New Information

iy = o(W;lhe—q, x¢] + by)
61— — tanh(WC [ht—li xt] + bC)

it 60~ * 0 decides what values to update
C
(o] * tanh generates “candidate values”

ht-1 | - that could be added to cell state



LSTM: Add New Information

@ previous cell state l’t — O-(Wl [h’t—1’ xt] + bl)
° forget gate output N
e - g oGS tanh(W,[h¢—q, x:] + b.)

» g decides what values to update
_[ * tanh generates “candidate values”

that could be added to cell state

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21

41



LSTM:

Update Cell State

Ct = ft * Ceq +ip * Gy

* f; * c;_q is to apply forget gate to

> C .
t previous cell state

* [, * C¢ is to apply input gate to add
new candidate values to cell state



LSTM: Update Cell State

0-00:00

e previous cell state
° forget gate output

° input gate output
° candidate
e new cell state

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-

step-explanation-44e9eb85bf21

Ct = [t *Crq T i x Gy

* fi * cy_q is to apply forget gate to
previous cell state

* [, * C¢ is to apply input gate to add
new candidate values to cell state

43



LSTM: Output Filtered Version of Cell State

o = o(W,lhe—q,x¢] + by)
h; = o; * tanh(c;)

Ot —~ * g decides what parts of the cell state to
& output as current hidden state
he-1 »ht o tanh squashes values between -1 and 1
Xt * 0; * tanh(c;) is to output filtered

version of cell state

h: will be used to compute

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21



LSTM: Output Filtered Version of Cell State

0 = o(Wylhe—q, x¢] + bo)
° previous cell state
°forgetgateoutput ht o Ot %k tanh(Ct)

‘ input gate output

o+ > ° candidate
o new cell state
© oot sste output o decides what parts of the current
@ it state and input to output as current

hidden state

tanh squashes values between -1 and 1

o; * tanh(c;) is to output filtered
version of cell state

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by- ht Wl” be USEd to CompUte yt 45
step-explanation-44e9eb85bf21



LSTM: Feed Forward

ar = th . ht—l + fo *Xe + bf

[t = U(Wf |he_q1, x| + bf) aj = Whi - he—q + Wy - x¢ + by
. ) ) = *he_q + Wyg - x¢ + by
= oiinyx +o) (T e
¢ = tanh(W_[h;_q1, x¢] + b,) backpropagation fi = o(ay)
¢ =F Qo +is OF, : i, = o(a)
0 = a(Wylhe—1, x¢] + by) ¢ = tanh(ay)

¢t =ft Oc-1+ig O &
or = d(a,)
© is element-wise multiplication hs = oy © tanh(c;)

h; = o; O tanh(c;)

46



LSTM: Backpropagation Through Time

 Compute gradient w.r.t. hidden state
ar = Wyp - heoq + Wyp - xp + by

a; = Whyi - heq + Wy - X + b; oL, _ 0L, 0,
dh dy; 0h
ag == Whg . ht—l + Wxg . xt + bg t yt t

ap = Who - he—qy + Wyo - x¢ + by \

fe = a(af) This depends on the output function
i, =o0(a;) ¥y, = output_function(h,), e.g., fully
2, = tanh(ag) connected layer
e =ft Oco1+ir O
0y = O-(ao)

h; = o, © tanh(c;)

https://cs231n.github.io/optimization-2/



LSTM: Backpropagation Through Time

 Compute gradient w.r.t. output gate
af = th . ht—l + fo * Xt + bf
oL oL oh, OL

a; =Wy~ he_q + Wy - x + by * 3o, = on Bo; — om tanh(c;)

ag = Whg ~he_q + Wxg *X¢ + bg . 0L _ L 9oy _ dL tanh(c,) - d(o(ay))
ao == WhO ° ht—l + on ° xt- + bO aao - aot aao - E)ht t dao
= )
fe G(af) = i- tanh(c,) - o(a,)(1 — o(a,))
. t
ir = o(a;) 5
L
G, = tanh(ag) = on, tanh(c;) - 0.(1 — o)
¢ =fOc1+i O& s _OL _ 0L da, _ OL Ry e.g., when Wy,
o, = o(a,) MWho  9ao OWpno 04 changes for a small
h, = o, © tanh(c;) . OL _ oL Jda, _ OL X, amount (0W;,,), how
OWyxo  0ap O0Wyxo da, much would L change
aL oL da, aL (and the change

db, da, 0b, da, direction)?




LSTM: Backpropagation Through Time

 Compute gradient w.r.t. cell state
af = th . ht—l + fo * Xt + bf

dL _ dL dh, _ OL 2
a: =W.: - h W.. -x b - — = . = -0, - (1 — tanh(c
i hi t—1 + xi t + i dc, dh, dcq oh, t ( ( t) )
Gg = Wig ey + Wag - Xe + by TR VR T VI
Ay = Wyp - heq + Wy, - x, + by, L L A
= oL L ¢ dL . d(tanh(ag)) oL . ~
ft a(af) . —=—~'—t=—'lt'#=—'lt'(l—Ctz)
. dag ¢y Odag dce dag dc
ir = o(a;)
oL oL Odag oL
. . — . - - h
¢; = tanh(ay) Wn, da, OWn, da, 1
e =ft Oco1+ir O , 9L _ oL dag _ oL x
o, = o(a,) OWyg day; Wy, day; ¢
hs = o, © tanh(c;) , 0L _ aL dag  aL
dbg dag 0by dag

49



LSTM: Backpropagation Through Time

ar = Wyp - heoq + Wyp - xp + by
a; = Whyi - he—q + Wy - X + b;
ag = Whg - hioq + Wiy - Xt + by
Ao = Who * heq + Wy - x¢ + by

fe = o(ay)

ir = a(a;)

Cr = tanh(ag)
¢ =fOc1+i O&
o, = a(a,)
h;, = o, © tanh(c;)

~

oL _ oL dc _ oL

= = ¢
ait aCt alt aCt t
oL 0L 9di; _ a_L
da; iy da; Adcy ¢t

oL

=9 & - a(ai)(l —

~
.

 Compute gradient w.r.t. input gate

d(o’(ai))
da;

oL . . .
U(Cli)) = e, Co ip (1 — i)

oL _ 9L  da; _ 0L

oW i - da; OWpy; . (E

oL _ 9L da; _ 0L
ani - aai ani - aai

oL _ OL da; _ OL
abl’ - aai abi - aai

: ht—l

-xt

50



LSTM: Backpropagation Through Time

 Compute gradient w.r.t. forget gate
ar = Wyp - heoq + Wyp - xp + by

oL JdL O0c oL
a; = Whyi - he—q + Wy - X + b; * a_ﬁ=a_ct'a_];=a_ct'ct—1
ag = Wyg he_q + Wy -xc +b
g hg * -1 xg ' Xt T Og oL oL on oL .d(a(af))
Clo == WhO * ht_l + on 'xt + bO aaf - aft aaf - act Ct—l daf
fe = o(ay)
i, = o(a;) = 3¢, Ct-1 G(af) (1_0(af)) de, Ct-1 (L= f)

~ d
¢, = tanh(ay) o L _OL 9y _OL g,
E)th 6af 6th 6af
¢ =ft Oco1 +i O G
oL 0L Oday 9L

Oy = G(QO) anf - aaf . anf B aaf "Xt
h; = o; O tanh(c;)

oL 0L Oday 9L

51



LSTM: Backpropagation Through Time

ar = Wyp - heoq + Wyp - xp + by
a; = Whyi - heq + Wy - X + b;
ag = Whg - hioq + Wiy - Xt + by
Ao = Who * heq + Wy - x¢ + by

fe = o(ay)

ir = oa(a;)

Cr = tanh(ag)
¢ =fOc1+it O
o, = a(a,)
h; = o; O tanh(c;)

* These computation for backpropagation
will be calculated T times (the number of
time steps)

* The weights will be updated using the
accumulated gradient w.r.t. each weight
for all time steps

e For example, 2L = yT 9L
P Powy, StEL aW,’{f
dL
th +=a *

ath



LSTM: Mitigate Vanishing Gradient

* VanillaRNNs g g <( = Oh; )8hk>

90 — Oh, 11 op. ) o0
k=1 i=k+1

Oh; “r Oh,

—|l <1 : Vanish!
Hahil — 11 Oh. anis
Oh; = Oh,;

- > 1 ! Explode!
Hahi_1 — 1l Oh. xplode

https://naokishibuya.medium.com/long-short-term-memory-394aa8461a35

53



LSTM: Mitigate Vanishing Gradient

* Vanilla RNNs g & & - Ohy,
o (1 5)%
k=1 =k+
e LSTM o0& B 9E — - ack
90  Oe, ; :1;[ oec;_1

* Recall that in
* Vanilla RNNS, h; = tanh(Wpphe_1 + Wopxs)
« LSTM, hy = 0o, ©@ tanh(c,) and ¢, = f © ¢ci—q + i O &

https://naokishibuya.medium.com/long-short-term-memory-394aa8461a35



LSTM: Mitigate Vanishing Gradient

* L5TM 0 O Z”: 9\ Ocy
00  Oc, dc;,_1 ) 00
k=1 1
ct=Cr-1 @ U(Wf - [he-1,%c]) ©
tanh (W, - [he—q, x¢]) & a(W; - [he—q, x¢])

%% .2 [ct-1 R [ D ¢ ® ;]

OCt—y 0Ct—y

Note that the notation is
different from previous

ac =R -1 @ fel + [Ct ® i¢] slides
aft 6Ct_1 alt = aét .
—_ . + . + 1
aCt_l Ct_l 6Ct_ ft aCt_l Ct aCt_l lt

55
https://medium.datadriveninvestor.com/how-do-Istm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577



LSTM: Mitigate Vanishing Gradient

* LSTM 0  OE z”: ﬁ de; \ Oey
06 N 8Cn Bci_l 06

k=1 1=k—+1

af = th °ht—1 +fo * Xt +bf

ct =1 @ a(Wr - [he—1,x]) D a; = Wy » he—q + Wy - x¢ + b
sigm’(z) = sigm(z)(1 — sigm(z)) g = Whg * ey + Wyg - X + by
tanh (W, - [he—1, x¢]) @ a(W; - [he_q, x¢]) @ =W, hyy+ W, 2, +b,
dce _ 3 ac ) , fe = o(ay)
aC:tl e — 1 ®fi D G Q] acttl =o'(Wy- [he—1,xe]) - Wy - 0r—1 @ tanh'(ce—1) - ¢t i, = o(a)
3 - l
N ) ¢, = tanh(ay)
=51 ® fil + 5= [6 ® i) z et O
+ O-I(Wl " [ht—ll xt]) = M/l = 0[’-1 ® ta]lh,(ct_l) 2 Et t t -1 t t
> aft » 6Ct 1 f+ it .,..,+ 65t -i Ot=0_(a0)
] el dce—y "' dees t oce—y ! +0' (W, - [he—1,x¢]) - We - 0p—1 @ tanh'(ce—4) - iy h, = o, ® tanh(c,)

56
https://medium.datadriveninvestor.com/how-do-Istm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577



LSTM: Mitigate Vanishing Gradient

* LSTM 0  OE z”: " e\ dey
90— e, 00

oc,_
k=1 g ==L

i=k+

A = O'I(Wf' [ht—l'xt]) Wr-0i-1 @ tanh'(ct—1) - ¢t—1

ac , ,
60;1 =g (Wf : [ht—l:xt]) g Wf +0p—q @ tanh'(c—1) - ¢t—1 B,=Ff,
+f; Ce = o' (Wi - [he—1,x¢]) - Wi 0p—4 ® tanh'(c¢—4) - C;
+0' (Wi« [he—1, x¢]) - Wi - 0p—1 Q tanh'(cp—q) - & Dt = ' (We - [he—1, x¢]) - We - 0p—1 @ tanh'(ce—y) - i
+0' (W, - [he—q, x¢]) - W - 041 Q tanh'(ci—q) - i ac
¢ -1, Xt ¢ " O%t—1 t—1) " Lt act = A, +B.+C, +D, (6)
t—1

57
https://medium.datadriveninvestor.com/how-do-Istm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577



LSTM: Mitigate Vanishing Gradient

* LSTM 0  OE Z ﬁ de, ack
00 - 8(:” i acz 1

aCt
dcr—y

=A;+B.+C.+D;, (6)

* Addictive function (rather than multiplying) and B, (forget gate vector)
help mitigate the gradient vanishing problem

https://medium.datadriveninvestor.com/how-do-Istm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577



LSTM: Key Concepts

* Maintain a separate cell state from what is outputted

» Use gates to control the flow of information
* Forget gate gets rid of irrelevant information
» Selectively updates cell state
e Output gate returns a filtered version of the cell state

* LSTM can mitigate vanishing gradient problem



Acknowledgements

* Deep learning slides adapted from https://m2dsupsdiclass.github.io/lectures-labs/ by Olivier
Grisel and Charles Ollion (CC-By 4.0 license)

* Gil, Yolanda (Ed.) Introduction to Computational Thinking and Data Science. Available from
http://www.datascience4all.org

* https://lilianweng.github.io/posts/2018-08-12-vae/

61


https://m2dsupsdlclass.github.io/lectures-labs/
http://www.datascience4all.org/
https://lilianweng.github.io/posts/2018-08-12-vae/

@ @ These materials are released under a CC-BY
License

https://creativecommons.org/licenses/by/2.0/

You are free to:

Share — copy and redistribute the material in any medium or format Artwork taken from
Adapt — remix, transform, and build upon the material other sources is
for any purpose, even commercially. acknowledged
The licensor cannot revoke these freedoms as long as you follow the license terms. where it appears.
Artwork that is not
Under the following terms: acknowledged is by
Attribution — You must give appropriate credit, provide a link to the license, the quthor
and indicate if changes were made. You may do so in any reasonable manner,

but not in any way that suggests the licensor endorses you or your use.

Please credit as: Chiang, Yao-Yi Introduction to Spatial Artificial Intelligence. Available from
https://yaoyichi.github.io/spatial-ai.html

If you use an individual slide, please place the following at the bottom: “Credit:
https://yaoyichi.github.io/spatial-ai.html

We welcome your feedback and contributions.

Credit: http://www.datascience4all.org/




