
Recurrent Neural Networks I
Yao-Yi Chiang

Computer Science and Engineering
University of Minnesota

yaoyi@umn.edu

1
CC-BY
Attribution

Sequences

• Sequences are everywhere
• Natural language

• “This morning I took my cat for a walk”

• Audio and video

• Sensor observations (e.g., air quality,
traffic, noise)

2

0

50

100

150

Aug 15 Aug 20 Aug 25 Aug 30

PM
2.

5
va

lu
es

Time

Cloud Mask from Weather4cast

Moving MNIST

https://www.iarai.ac.at/weather4cast/2021-competition/challenge/
http://www.cs.toronto.edu/~nitish/unsupervised_video/

Sequence Modeling

• Sequence modeling is the task of predicting what comes next
• E.g., “This morning I took my cat for a walk ”

• E.g., given historical air quality, forecast air quality in next couple of hours

3

0

50

100

150

Aug 15 Aug 20 Aug 25 Aug 30

PM
2.

5
va

lu
es

What is the air
quality in future?

Time

given previous words predict the next word

A Sequence Modeling Example
Predict the Next Word

• Idea #1: Use a fixed window
“This morning I took my cat for a walk ”

4

given previous
two words

predict the
next word

A Sequence Modeling Example
Predict the Next Word

• Idea #1: Use a fixed window
“This morning I took my cat for a walk ”

• Limitation: Cannot model long-term dependencies
• E.g., “France is where I grew up, but I now live in Boston. I speak fluent ___.”

5

given previous
two words

predict the
next word

A Sequence Modeling Example
Predict the Next Word

• Idea #1: Use a fixed window
“This morning I took my cat for a walk ”

• Limitation: Cannot model long-term dependencies
• E.g., “France is where I grew up, but I now live in Boston. I speak fluent ___.”

• We need information from the distant past to accurately predict the
correct word

6

given previous
two words

predict the
next word

A Sequence Modeling Example
Predict the Next Word

• Idea #2: Use entire sequence as set of counts
“This morning I took my cat for a walk ”

7

predict the
next word

A Sequence Modeling Example
Predict the Next Word

• Idea #2: Use entire sequence as set of counts
“This morning I took my cat for a walk ”

• Bag-of-words model
• Define a vocabulary and initialize a zero vector where each element

represents for each word
• Compute word frequency and update the correspond position in the vector

[0 1 0 0 1 0 1 … … 0 0 1 1 0 0 0 1 0]
• Use the vector for prediction

8

predict the
next word

Here 1 is the count for the work “a”

A Sequence Modeling Example
Predict the Next Word

• Idea #2: Use entire sequence as set of counts
“This morning I took my cat for a walk ”

• Limitation: Counts don’t preserve order
• “The food was good, not bad at all.” VS. “The food was bad, not good at all.”

• We need to preserve the information about order

9

predict the
next word

A Sequence Modeling Example
Predict the Next Word

• Idea #3: Use a big fixed window
“This morning I took my cat for a walk ”

• One-hot encoding
[1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 … …]

• Use the one-hot encoding vector for prediction

10

predict the
next word

given these
words

this morning I

A Sequence Modeling Example
Predict the Next Word

• Idea #3: Use a big fixed window
“This morning I took my cat for a walk ”

• Limitation: Each of these inputs has a separate parameter
• “I took my cat this morning for a walk”

[0 0 0 1 0 0 0 … … 1 0 0 0 0 0 0 0 0 0 0 0 0 1 … …]

• Things we learn about the sequence should be applicable when they
appear elsewhere in the sequence

11

predict the
next word

given these
words

this morningI

Sequence Modeling

• To model sequences, we need to:
• Handle variable-length sequences
• Track long-term dependencies
• Maintain information about order
• Share parameters across the sequence

• Solution:
• Recurrent Neural Networks (RNNs)

12

Standard Feed-Forward Neural Network

13

One to One
“Vanilla” neural network

Recurrent Neural Networks

14

One to One
“Vanilla” neural network

Many to One
Sentiment Classification

Recurrent Neural Networks

15

One to One
“Vanilla” neural network

Many to One
Sentiment Classification

Many to Many
Music Generation

... and many other
architectures and

applications

A Recurrent Neural Network (RNN)

16

!𝑦!

𝑥! input vector

output vector

A Recurrent Neural Network (RNN)

• Apply a recurrence relation at every time
step to process a sequence:

ℎ! = 𝑓𝑾 ℎ!#$, 𝑥!

Note: the same function and set of parameters are used at
every time step

17

cell state

a function
parameterized

by 𝑾

old state

current
input

!𝑦!

𝑥! input vector

output vector

https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html

RNN: State Update and Output

ℎ! = 𝑓𝑾 ℎ!#$, 𝑥!

• Update hidden state, 𝑓𝑾
ℎ! = tanh(𝑾𝒉𝒉ℎ!$% +𝑾𝒙𝒉𝑥!)

• Compute output vector
!𝑦! = 𝑾𝒉𝒚ℎ!

18

!𝑦!

𝑥! input vector

output vector

cell state

a function
parameterized

by 𝑾

old state

current
input

RNN: Computational Graph Across Time

• Represent as computational graph unrolled across time

19

RNN: Computational Graph Across Time

• Represent as computational graph unrolled across time

20

RNN: Computational Graph Across Time

• Represent as computational graph unrolled across time

21

RNN: Computational Graph Across Time

• Represent as computational graph unrolled across time

22

RNN: Computational Graph Across Time

• Re-use the same weight matrices at every time step

23

RNN: Computational Graph Across Time

• Compute the loss 𝐿! by comparing '𝑦! and 𝑦! (𝑦! is ground truth)
• E.g., 𝐿! = (!𝑦! − 𝑦!)(

24

𝐿!

RNN: Computational Graph Across Time

25

• Total loss

𝐿!

𝐿 =1
!*%

+

𝐿!

𝐿!

RNN: Backpropagation Through Time

• For backpropagation, we need to compute the gradients w.r.t. 𝑊%&,
𝑊%%, 𝑊'%

26

𝐿!

𝜕𝐿
𝜕𝑤"

=
1
𝑇
1

!#$

%

𝜕𝑙(𝑦! , 6𝑦!)
𝜕𝑤""

=
1
𝑇
1

!#$

%

𝜕𝑙(𝑦! , 6𝑦!)
𝜕 6𝑦!

𝜕𝑔(ℎ! , 𝑤"&)
𝜕ℎ!

𝜕ℎ!
𝜕𝑤""

.

RNN: Backpropagation Through Time

Computing the gradient involves many multiplications (and repeated 𝑓;)
• When 𝑤< changes (in a small amount), how much (and direction) would
𝐿 change?

27

For example,

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html

ℎ! = tanh(𝑾𝒙𝒉𝑥! +𝑾𝒉𝒉ℎ!)$)

𝜕ℎ!
𝜕𝑤""

=
𝜕𝑓(𝑥! , ℎ!)$, 𝑤"")

𝜕𝑤""
=
𝜕𝑓(𝑥! , ℎ!)$, 𝑤"")

𝜕ℎ!)$

𝜕ℎ!)$
𝜕𝑤""

.

Gradient Flow: Exploding Gradients

29

Case 1: Many values are > 1
Exploding gradients

Trick : Gradient clipping to
scale big gradients

Case 2: Many values are < 1
Vanishing gradients

Trick 1: Activation functions
Trick 2: Weight initialization
Trick 3: Network architecture

Gradient Flow: Vanishing Gradients

30

Case 1: Many values are > 1
Exploding gradients

Trick 1: Gradient clipping to
scale big gradients

Case 2: Many values are < 1
Vanishing gradients

Trick 1: Activation functions
Trick 2: Network architecture

Vanishing Gradients

What causes vanishing gradients?
Multiply many small numbers together

Further back time steps would have smaller
and smaller gradients

Fail to capture long-term dependencies

31

Trick 1: Activation Functions

32

Using ReLU can prevent 𝑓;
from shrinking the gradients
when 𝑥 > 0

Trick 2: Network Architecture – Gated Cells

• Use a more complex recurrent unit with gates to control what
information is passed through

• Long Short-Term Memory (LSTM) networks rely on gated cells to track
information throughout many time steps.

33

Standard RNNs

• In a standard RNN, recurrent modules contain simple computation

34
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

• In an LSTM network, recurrent modules contain gated cells that
control the information flow [Hochreiter et al., 1997]

35
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

• Besides hidden state ℎ! (same as RNN), LSTM maintains a cell state 𝑪𝒕
where it’s easy for information to flow

36

Long Short-Term Memory (LSTM)

• Information is added or removed to cell state through structures
called gates

37

Gates optionally let information through, via a
sigmoid layer and pointwise multiplication

LSTM: Forget Irrelevant Information

𝑓! = 𝜎 𝑊) ℎ!#$, 𝑥! + 𝑏)

• Concatenate previous hidden state
and current input

• When 𝜎 outputs 0, the network will
“completely forget” the information
from 𝑐!$%

• When 𝜎 outputs 1, “completely keep”

38

LSTM: Forget Irrelevant Information

𝑓! = 𝜎 𝑊) ℎ!#$, 𝑥! + 𝑏)

• Concatenate previous hidden state
and current input

• When 𝜎 outputs 0, the network will
“completely forget” the information
from 𝑐!$%

• When 𝜎 outputs 1, “completely keep”

39https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21

LSTM: Add New Information

40

𝑖! = 𝜎 𝑊* ℎ!#$, 𝑥! + 𝑏*
𝑐̃! = tanh 𝑊+ ℎ!#$, 𝑥! + 𝑏+

• 𝜎 decides what values to update
• tanh generates “candidate values”

that could be added to cell state

LSTM: Add New Information

41

𝑖! = 𝜎 𝑊* ℎ!#$, 𝑥! + 𝑏*
𝑐̃! = tanh 𝑊+ ℎ!#$, 𝑥! + 𝑏+

• 𝜎 decides what values to update
• tanh generates “candidate values”

that could be added to cell state

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21

LSTM: Update Cell State

42

𝑐! = 𝑓! ∗ 𝑐!#$ + 𝑖! ∗ 𝑐̃!

• 𝑓! ∗ 𝑐!$% is to apply forget gate to
previous cell state

• 𝑖! ∗ 𝑐̃! is to apply input gate to add
new candidate values to cell state

LSTM: Update Cell State

43

𝑐! = 𝑓! ∗ 𝑐!#$ + 𝑖! ∗ 𝑐̃!

• 𝑓! ∗ 𝑐!$% is to apply forget gate to
previous cell state

• 𝑖! ∗ 𝑐̃! is to apply input gate to add
new candidate values to cell state

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21

LSTM: Output Filtered Version of Cell State

44

𝑜! = 𝜎 𝑊, ℎ!#$, 𝑥! + 𝑏,
ℎ! = 𝑜! ∗ tanh 𝑐!

• 𝜎 decides what parts of the cell state to
output as current hidden state

• tanh squashes values between -1 and 1
• 𝑜! ∗ tanh 𝑐! is to output filtered

version of cell state
• ℎ! will be used to compute !𝑦!

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21

LSTM: Output Filtered Version of Cell State

45

𝑜! = 𝜎 𝑊, ℎ!#$, 𝑥! + 𝑏,
ℎ! = 𝑜! ∗ tanh 𝑐!

• 𝜎 decides what parts of the current
state and input to output as current
hidden state

• tanh squashes values between -1 and 1
• 𝑜! ∗ tanh 𝑐! is to output filtered

version of cell state
• ℎ! will be used to compute !𝑦!https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-

step-explanation-44e9eb85bf21

LSTM: Feed Forward

46

𝑓! = 𝜎 𝑊D ℎ!$%, 𝑥! + 𝑏D
𝑖! = 𝜎 𝑊E ℎ!$%, 𝑥! + 𝑏E

𝑐̃! = tanh 𝑊F ℎ!$%, 𝑥! + 𝑏F
𝑐! = 𝑓! ⊙ 𝑐!$% + 𝑖! ⊙ 𝑐̃!
𝑜! = 𝜎 𝑊G ℎ!$%, 𝑥! + 𝑏G

ℎ! = 𝑜! ⊙ tanh 𝑐!

𝑎! = 𝑊"! 0 ℎ#$% +𝑊&! 0 𝑥# + 𝑏!
𝑎' = 𝑊"' 0 ℎ#$% +𝑊&' 0 𝑥# + 𝑏'
𝑎(= 𝑊"(0 ℎ#$% +𝑊&(0 𝑥# + 𝑏(
𝑎) = 𝑊") 0 ℎ#$% +𝑊&) 0 𝑥# + 𝑏)

𝑓# = 𝜎 𝑎!
𝑖# = 𝜎 𝑎'

𝑐̃# = tanh 𝑎(
𝑐# = 𝑓#⊙ 𝑐#$% + 𝑖#⊙ 𝑐̃#

𝑜# = 𝜎 𝑎)
ℎ# = 𝑜#⊙ tanh 𝑐#

Rewrite the functions
for computing

backpropagation

⊙ is element-wise multiplication

LSTM: Backpropagation Through Time

• Compute gradient w.r.t. hidden state

47

𝜕𝐿!
𝜕ℎ!

=
𝜕𝐿!
𝜕 6𝑦!

I
𝜕 6𝑦!
𝜕ℎ!

𝑎* = 𝑊"* I ℎ!)$ +𝑊+* I 𝑥! + 𝑏*
𝑎, = 𝑊", I ℎ!)$ +𝑊+, I 𝑥! + 𝑏,
𝑎- = 𝑊"- I ℎ!)$ +𝑊+- I 𝑥! + 𝑏-
𝑎. = 𝑊". I ℎ!)$ +𝑊+. I 𝑥! + 𝑏.

𝑓! = 𝜎 𝑎*
𝑖! = 𝜎 𝑎,
̃𝑐! = tanh 𝑎-

𝑐! = 𝑓! ⊙ 𝑐!)$ + 𝑖! ⊙ ̃𝑐!
𝑜! = 𝜎 𝑎.

ℎ! = 𝑜! ⊙ tanh 𝑐!

This depends on the output function
6𝑦! = output_function(ℎ!), e.g., fully
connected layer

https://cs231n.github.io/optimization-2/

LSTM: Backpropagation Through Time

• Compute gradient w.r.t. output gate

48

• /0
/1!

= /0
/"!

I /"!
/.!

= /0
/"!

I tanh 𝑐!

• /0
/2"

= /0
/1!

I /1!
/2"

= /0
/"!

I tanh 𝑐! I 3 4 2"
32"

= /0
/"!

I tanh 𝑐! I 𝜎 𝑎. 1 − 𝜎 𝑎.

= /0
/"!

I tanh 𝑐! I o!(1 − o!)

• /0
/5#"

= /0
/2"

I /2"
/5#"

= /0
/2"

I ℎ!)$

• /0
/6"

= /0
/2"

I /2"
/6"

= /0
/2"

• /0
/5$"

= /0
/2"

I /2"
/5$"

= /0
/2"

I 𝑥!

𝑎* = 𝑊"* I ℎ!)$ +𝑊+* I 𝑥! + 𝑏*
𝑎, = 𝑊", I ℎ!)$ +𝑊+, I 𝑥! + 𝑏,
𝑎- = 𝑊"- I ℎ!)$ +𝑊+- I 𝑥! + 𝑏-
𝑎. = 𝑊". I ℎ!)$ +𝑊+. I 𝑥! + 𝑏.

𝑓! = 𝜎 𝑎*
𝑖! = 𝜎 𝑎,
̃𝑐! = tanh 𝑎-

𝑐! = 𝑓! ⊙ 𝑐!)$ + 𝑖! ⊙ ̃𝑐!
𝑜! = 𝜎 𝑎.

ℎ! = 𝑜! ⊙ tanh 𝑐!

e.g., when 𝑊".
changes for a small
amount (𝜕𝑊".), how
much would 𝐿 change
(and the change
direction)?

LSTM: Backpropagation Through Time

• Compute gradient w.r.t. cell state

49

• /0
/7!

= /0
/"!

I /"!
/7!

= /0
/"!

I 𝑜! I (1 − tanh 𝑐! 8)

• /0
/2%

= /0
/ ̃7!

I / ̃7!
/2%

= /0
/7!

I 𝑖! I
3(;<=> 2%)

32%
= /0

/7!
I 𝑖! I (1 − ̃𝑐!

8)

• /0
/5#%

= /0
/2%

I
/2%
/5#%

= /0
/2%

I ℎ!)$

• /0
/6%

= /0
/2%

I
/2%
/6%

= /0
/2%

• /0
/5$%

= /0
/2%

I
/2%
/5$%

= /0
/2%

I 𝑥!

𝑎* = 𝑊"* I ℎ!)$ +𝑊+* I 𝑥! + 𝑏*
𝑎, = 𝑊", I ℎ!)$ +𝑊+, I 𝑥! + 𝑏,
𝑎- = 𝑊"- I ℎ!)$ +𝑊+- I 𝑥! + 𝑏-
𝑎. = 𝑊". I ℎ!)$ +𝑊+. I 𝑥! + 𝑏.

𝑓! = 𝜎 𝑎*
𝑖! = 𝜎 𝑎,
̃𝑐! = tanh 𝑎-

𝑐! = 𝑓! ⊙ 𝑐!)$ + 𝑖! ⊙ ̃𝑐!
𝑜! = 𝜎 𝑎.

ℎ! = 𝑜! ⊙ tanh 𝑐!

• /0
/ ̃7!

= /0
/7!

I /7!
/ ̃7!

= /0
/7!

I 𝑖!

LSTM: Backpropagation Through Time

• Compute gradient w.r.t. input gate

50

• /0
/,!

= /0
/7!

I /7!
/,!

= /0
/7!

I ̃𝑐!

• /0
/5#&

= /0
/2&

I /2&
/5#&

= /0
/2&

I ℎ!)$

• /0
/6&

= /0
/2&

I /2&
/6&

= /0
/2&

• /0
/5$&

= /0
/2&

I /2&
/5$&

= /0
/2&

I 𝑥!

𝑎* = 𝑊"* I ℎ!)$ +𝑊+* I 𝑥! + 𝑏*
𝑎, = 𝑊", I ℎ!)$ +𝑊+, I 𝑥! + 𝑏,
𝑎- = 𝑊"- I ℎ!)$ +𝑊+- I 𝑥! + 𝑏-
𝑎. = 𝑊". I ℎ!)$ +𝑊+. I 𝑥! + 𝑏.

𝑓! = 𝜎 𝑎*
𝑖! = 𝜎 𝑎,
̃𝑐! = tanh 𝑎-

𝑐! = 𝑓! ⊙ 𝑐!)$ + 𝑖! ⊙ ̃𝑐!
𝑜! = 𝜎 𝑎.

ℎ! = 𝑜! ⊙ tanh 𝑐!

• /0
/2&

= /0
/,!
I /,!
/2&

= /0
/7!

I ̃𝑐! I
3 4 2&
32&

= /0
/7!

I ̃𝑐! I 𝜎 𝑎, 1 − 𝜎 𝑎, = /0
/7!

I ̃𝑐! I 𝑖!(1 − 𝑖!)

LSTM: Backpropagation Through Time

• Compute gradient w.r.t. forget gate

51

• /0
/*!

= /0
/7!

I /7!
/*!

= /0
/7!

I 𝑐!)$

• /0
/5#'

= /0
/2'

I
/2'
/5#'

= /0
/2'

I ℎ!)$

• /0
/6'

= /0
/2'

I
/2'
/6'

= /0
/2'

• /0
/5$'

= /0
/2'

I
/2'
/5$'

= /0
/2'

I 𝑥!

𝑎* = 𝑊"* I ℎ!)$ +𝑊+* I 𝑥! + 𝑏*
𝑎, = 𝑊", I ℎ!)$ +𝑊+, I 𝑥! + 𝑏,
𝑎- = 𝑊"- I ℎ!)$ +𝑊+- I 𝑥! + 𝑏-
𝑎. = 𝑊". I ℎ!)$ +𝑊+. I 𝑥! + 𝑏.

𝑓! = 𝜎 𝑎*
𝑖! = 𝜎 𝑎,
̃𝑐! = tanh 𝑎-

𝑐! = 𝑓! ⊙ 𝑐!)$ + 𝑖! ⊙ ̃𝑐!
𝑜! = 𝜎 𝑎.

ℎ! = 𝑜! ⊙ tanh 𝑐!

• /0
/2'

= /0
/*!

I /*!
/2'

= /0
/7!

I 𝑐!)$ I
3 4 2'

32'

= /0
/7!

I 𝑐!)$ I 𝜎 𝑎* 1 − 𝜎 𝑎* = /0
/7!

I 𝑐!)$ I 𝑓!(1 − 𝑓!)

LSTM: Backpropagation Through Time

• These computation for backpropagation
will be calculated 𝑻 times (the number of
time steps)
• The weights will be updated using the

accumulated gradient w.r.t. each weight
for all time steps

• For example, @A
@B!"

= ∑!C$D @A
@B!"

#

𝑊%) += 𝛼 ∗ @A
@B!"

52

𝑎* = 𝑊"* I ℎ!)$ +𝑊+* I 𝑥! + 𝑏*
𝑎, = 𝑊", I ℎ!)$ +𝑊+, I 𝑥! + 𝑏,
𝑎- = 𝑊"- I ℎ!)$ +𝑊+- I 𝑥! + 𝑏-
𝑎. = 𝑊". I ℎ!)$ +𝑊+. I 𝑥! + 𝑏.

𝑓! = 𝜎 𝑎*
𝑖! = 𝜎 𝑎,
̃𝑐! = tanh 𝑎-

𝑐! = 𝑓! ⊙ 𝑐!)$ + 𝑖! ⊙ ̃𝑐!
𝑜! = 𝜎 𝑎.

ℎ! = 𝑜! ⊙ tanh 𝑐!

LSTM: Mitigate Vanishing Gradient

• Vanilla RNNs

53
https://naokishibuya.medium.com/long-short-term-memory-394aa8461a35

LSTM: Mitigate Vanishing Gradient

• Vanilla RNNs

• LSTM

• Recall that in
• Vanilla RNNS, ℎ! = tanh(𝑾𝒉𝒉ℎ!$% +𝑾𝒙𝒉𝑥!)
• LSTM, ℎ! = 𝑜! ⊙ tanh 𝑐! and 𝑐! = 𝑓! ⊙ 𝑐!$% + 𝑖! ⊙ 𝑐̃!

54
https://naokishibuya.medium.com/long-short-term-memory-394aa8461a35

LSTM: Mitigate Vanishing Gradient

• LSTM

55
https://medium.datadriveninvestor.com/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577

Note that the notation is
different from previous
slides

LSTM: Mitigate Vanishing Gradient

• LSTM

56
https://medium.datadriveninvestor.com/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577

𝑎! = 𝑊"! ' ℎ#$% +𝑊&! ' 𝑥# + 𝑏!
𝑎' = 𝑊"' ' ℎ#$% +𝑊&' ' 𝑥# + 𝑏'
𝑎(= 𝑊"(' ℎ#$% +𝑊&(' 𝑥# + 𝑏(
𝑎) = 𝑊") ' ℎ#$% +𝑊&) ' 𝑥# + 𝑏)

𝑓# = 𝜎 𝑎!
𝑖# = 𝜎 𝑎'

𝑐̃# = tanh 𝑎(
𝑐# = 𝑓# ⊙𝑐#$% + 𝑖# ⊙ 𝑐̃#

𝑜# = 𝜎 𝑎)
ℎ# = 𝑜# ⊙ tanh 𝑐#

LSTM: Mitigate Vanishing Gradient

• LSTM

57
https://medium.datadriveninvestor.com/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577

LSTM: Mitigate Vanishing Gradient

• LSTM

• Addictive function (rather than multiplying) and Bt (forget gate vector)
help mitigate the gradient vanishing problem

58
https://medium.datadriveninvestor.com/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577

LSTM: Key Concepts

• Maintain a separate cell state from what is outputted

• Use gates to control the flow of information
• Forget gate gets rid of irrelevant information
• Selectively updates cell state
• Output gate returns a filtered version of the cell state

• LSTM can mitigate vanishing gradient problem

60

Acknowledgements

• Deep learning slides adapted from https://m2dsupsdlclass.github.io/lectures-labs/ by Olivier
Grisel and Charles Ollion (CC-By 4.0 license)

• Gil, Yolanda (Ed.) Introduction to Computational Thinking and Data Science. Available from
http://www.datascience4all.org

• https://lilianweng.github.io/posts/2018-08-12-vae/

61

https://m2dsupsdlclass.github.io/lectures-labs/
http://www.datascience4all.org/
https://lilianweng.github.io/posts/2018-08-12-vae/

These materials are released under a CC-BY
License

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

https://creativecommons.org/licenses/by/2.0/

Please credit as: Chiang, Yao-Yi Introduction to Spatial Artificial Intelligence. Available from
https://yaoyichi.github.io/spatial-ai.html

If you use an individual slide, please place the following at the bottom: “Credit:
https://yaoyichi.github.io/spatial-ai.html

We welcome your feedback and contributions.

Artwork taken from
other sources is
acknowledged
where it appears.
Artwork that is not
acknowledged is by
the author.

Credit: http://www.datascience4all.org/

