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Sequences
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* Sequences are everywhere

* Natural language
* “This morning | took my cat for a walk”
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* Audio and video Cloud Mask from Weather4cast

» Sensor observations (e.g., air quality, 3
traffic, noise) é)
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https://www.iarai.ac.at/weather4cast/2021-competition/challenge/
http://www.cs.toronto.edu/~nitish/unsupervised_video/

Sequence Modeling

* Sequence modeling is the task of predicting what comes next
* E.g., “This morning | took my cat for a walk ”

* E.g., given historical air quality, forecast air quality in next couple of hours

What is the air
quality in future?
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A Sequence Modeling Example
Predict the Next Word

e |dea #1: Use a fixed window

“This morning | took my cat for a walk ”



A Sequence Modeling Example
Predict the Next Word

e |dea #1: Use a fixed window

“This morning | took my cat for a walk ”

* Limitation: Cannot model long-term dependencies
* E.g., “France is where | grew up, but | now live in Boston. | speak fluent .
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 We need information from the distant past to accurately predict the
correct word



A Sequence Modeling Example
Predict the Next Word

 |dea #2: Use entire sequence as set of counts

morning | took cat walk ”



A Sequence Modeling Example
Predict the Next Word

 |dea #2: Use entire sequence as set of counts

o

morning | took cat walk ”

* Bag-of-words model

* Define a vocabulary and initialize a zero vector where each element
represents for each word

* Compute word frequency and update the correspond position in the vector
[0100101.... 001100010]

* Use the vector for prediction
Here 1 is the count for the work “2”



A Sequence Modeling Example
Predict the Next Word

 |dea #2: Use entire sequence as set of counts

o

morning | took cat walk ”

 Limitation: Counts don’t preserve order
* “The food was good, not bad at all.” VS. “The food was bad, not good at all.”

* We need to preserve the information about order



A Sequence Modeling Example
Predict the Next Word

 |dea #3: Use a big fixed window

“This morning | took my cat for a walk ”

* One-hot encoding

[ 0001000..... ]
|

» Use the one-hot encoding vector for prediction



A Sequence Modeling Example
Predict the Next Word

 |dea #3: Use a big fixed window

“This morning | took my cat for a walk ”

 Limitation: Each of these inputs has a separate parameter
* “l took my cat this morning for a walk”

[0001000....10000000000001..... ]
|

* Things we learn about the sequence should be applicable when they
appear elsewhere in the sequence



Sequence Modeling

* To model sequences, we need to:
* Handle variable-length sequences
* Track long-term dependencies

* Maintain information about order
» Share parameters across the sequence ‘[ RNN

 Solution: 1
* Recurrent Neural Networks (RNNs)



Standard Feed-Forward Neural Network
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Recurrent Neural Networks
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Recurrent Neural Networks

<2

I | | | nd many other
OO0 DO s
11 1T

One to One Many to One Many to Many
“Vanilla” neural network Sentiment Classification Music Generation




A Recurrent Neural Network (RNN)

Y output vector

Xt input vector




A Recurrent Neural Network (RNN)

* Apply a recurrence relation at every time

step to process a sequence:

old state

hy = fw(:

ht—]

,Xt)

current

input

Note: the same function and set of parameters are used at

every time step

https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html|

Y output vector

A

RNN

recurrent cell t

I

Xt input vector



RNN: State Update and Output

old state
B yt output vector
he = fw(he—q)|xe)
current
input
| —‘ RNN
o Update hidden state, fW recurrent cell t
he = tanh(Wpphe_y + Wepxy) I
tanh(z)
U X¢  input vector

* Compute output vector
P = Whyhe > T




RNN: Computational Graph Across Time

* Represent as computational graph unrolled across time
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* Represent as computational graph unrolled across time




RNN: Computational Graph Across Time

* Represent as computational graph unrolled across time

A A ~

Yt Yo Y1

T =k

Xt X0 X1




RNN: Computational Graph Across Time

* Represent as computational graph unrolled across time




RNN: Computational Graph Across Time

* Re-use the same weight matrices at every time step




RNN: Computational Graph Across Time

* Compute the loss L; by comparing ¥, and y; (y; is ground truth)

*Eg, L= (Vr — J’t)z

—> Forward pass

Ly Ly L, L,
t t t t
Ve Yo 91 Y2 Jt
RNN —_
Whp Whn J Whn
thT Win T Win T Win
Xt X0 X1 X2 Xt



RNN: Computational Graph Across Time

T
* Total loss L = ELt
t=1

— L
—> Forward pass — /

T Ly 0 L,

~

Yt

t t t
Yo 91 2 "
‘ Why : whyI whyT Why :
I‘{ RNN i—‘ — H ] >
Whn Whn J Whn
Win thI thT Win
X0 X1 X2 " un

Xt




RNN: Backpropa

* For backpropagation, we need
Whi,» Wxn

gation Through Time

to compute the gradients w.r.t. Wp,,,

— Forward pass g

<+—— Backward pass Ly Ly L, L
t] t] t t]

Ve Yo y1 Y2 Ve

| wll  wf] ] "

RNN = > >
) Whn{_ ) Whn{_ Y Whn

thT w hT thT Win

Xt X0 X1 X2 Xt
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RNN: Backpropagation Through Time

¥ P A 4 v @
hy — : . h,
) Wha{ ) Whn{ P Whn @
wxh I th I th T wxh T
X0 X1 X2 "aw Xt

Computing the gradient involves many multiplications (and repeated f”)

* When wy, changes (in a small amount), how much (and direction) would

L change? .
For example, 9% _1\ 009
aWh T aWhh ht = tanh(thxt + Whhht—l)
t=1
T
_ l l(ye, 9¢) 0g(he, why)| Ok, dhy _ of (x¢, he—1, Whp) _ Of (x¢, he—1, Whp) Ohe—q
T ayt aht aWhh aWhh aWhh aht_l aWhh .
t=1 27

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html|



Gradient Flow: Exploding Gradients

Case 1: Many values are > 1
Exploding gradients

Trick : Gradient clipping to
scale big gradients

J

o

th T

Xt

29



Gradient Flow: Vanishing Gradients

\‘ 4
Wi j ht J

\
th T

Xt

N\

Case 2: Many values are< 1
Vanishing gradients

Trick 1: Activation functions
Trick 2: Network architecture

~

J

30



Vanishing Gradients

“The clouds are inthe ___ "
What causes vanishing gradients? ; 5 ; @ :
Yo Y1 V2 Va
Multiply many small numbers together t

t ot
| [H@ LHLHL]

Further back time steps would have smaller

and smaller gradients “l grew up in France, ... and | | speak fluent___ "
\ Yo 91 " Ve Fre1
Fail to capture long-term dependencies { N i . H ]
t t t t

31
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Trick 1: Activation Functions

Sigmoid 1
o(z) = 1+i—:c
iemoid derivative tanh 1‘
) Oold derivative t anh(:z:) o ‘ 5
RelLU
max (0, x)

RelLU derivative

Using ReLU can prevent f'
from shrinking the gradients
whenx > 0




Trick 2: Network Architecture — Gated Cells

* Use a more complex recurrent unit with gates to control what
information is passed through

gated cell
ST CIRUL e

* Long Short-Term Memory (LSTM) networks rely on gated cells to track
information throughout many time steps.



Standard RNNs

* In a standard RNN, recurrent modules contain simple computation

|:|Q—>>—>—<

Neural Network Pointwise Vector

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Layer Operation  Transfer

Concatenate Copy



Long Short-Term Memory (LSTM)

* In an LSTM network, recurrent modules contain gated cells that
control the information flow [Hochreiter et al., 1997]

Neural Network Pointwise Vector

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Layer Operation  Transfer

Concatenate Copy



Long Short-Term Memory (LSTM)

* Besides hidden state h; (same as RNN), LSTM maintains a cell state C,
where it’s easy for information to flow




Long Short-Term Memory (LSTM)

* Information is added or removed to cell state through structures
called gates

he 3

@ A
——— o]
tanh
X X
(g)(tanh ] (o] _

Gates optionally let information through, via a
sigmoid layer and pointwise multiplication

v

/




LSTM: Forget Irrelevant Information

ft = U(Wf[ht—1»xt] + bf)

* Concatenate previous hidden state
and current input

* When o outputs 0, the network will
“completely forget” the information
from cy_q

 When o outputs 1, “completely keep”



LSTM: Forget Irrelevant Information

I

ft = U(Wf[ht—pxt] + bf)

Q previous cell state

° forget gate output

* Concatenate previous hidden state
and current input

* When o outputs 0, the network will
“completely forget” the information
from cy_q

 When o outputs 1, “completely keep”

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-

step-explanation-44e9eb85bf21

39



LSTM: Add New Information

iy = o(W;lhe—q, x¢] + by)
61— — tanh(WC [ht—li xt] + bC)

it 60~ * 0 decides what values to update
C
(o] * tanh generates “candidate values”

ht-1 | - that could be added to cell state



LSTM: Add New Information

@ previous cell state l’t — O-(Wl [h’t—1’ xt] + bl)
° forget gate output N
e - g oGS tanh(W,[h¢—q, x:] + b.)

» g decides what values to update
_[ * tanh generates “candidate values”

that could be added to cell state

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21

41



LSTM:

Update Cell State

Ct = ft * Ceq +ip * Gy

* f; * c;_q is to apply forget gate to

> C .
t previous cell state

* [, * C¢ is to apply input gate to add
new candidate values to cell state



LSTM: Update Cell State

0-00:00

e previous cell state
° forget gate output

° input gate output
° candidate
e new cell state

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-

step-explanation-44e9eb85bf21

Ct = [t *Crq T i x Gy

* fi * cy_q is to apply forget gate to
previous cell state

* [, * C¢ is to apply input gate to add
new candidate values to cell state

43



LSTM: Output Filtered Version of Cell State

o = o(W,lhe—q,x¢] + by)
h; = o; * tanh(c;)

Ot —~ * g decides what parts of the cell state to
& output as current hidden state
he-1 »ht o tanh squashes values between -1 and 1
Xt * 0; * tanh(c;) is to output filtered

version of cell state

h: will be used to compute

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21



LSTM: Output Filtered Version of Cell State

0 = o(Wylhe—q, x¢] + bo)
° previous cell state
°forgetgateoutput ht o Ot %k tanh(Ct)

‘ input gate output

o+ > ° candidate
o new cell state
© oot sste output o decides what parts of the current
@ it state and input to output as current

hidden state

tanh squashes values between -1 and 1

o; * tanh(c;) is to output filtered
version of cell state

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by- ht Wl” be USEd to CompUte yt 45
step-explanation-44e9eb85bf21



LSTM: Feed Forward

ar = th . ht—l + fo *Xe + bf

[t = U(Wf |he_q1, x| + bf) aj = Whi - he—q + Wy - x¢ + by
. ) ) = *he_q + Wyg - x¢ + by
= oiinyx +o) (T e
¢ = tanh(W_[h;_q1, x¢] + b,) backpropagation fi = o(ay)
¢ =F Qo +is OF, : i, = o(a)
0 = a(Wylhe—1, x¢] + by) ¢ = tanh(ay)

¢t =ft Oc-1+ig O &
or = d(a,)
© is element-wise multiplication hs = oy © tanh(c;)

h; = o; O tanh(c;)

46



LSTM: Backpropagation Through Time

 Compute gradient w.r.t. hidden state
ar = Wyp - heoq + Wyp - xp + by

a; = Whyi - heq + Wy - X + b; oL, _ 0L, 0,
dh dy; 0h
ag == Whg . ht—l + Wxg . xt + bg t yt t

ap = Who - he—qy + Wyo - x¢ + by \

fe = a(af) This depends on the output function
i, =o0(a;) ¥y, = output_function(h,), e.g., fully
2, = tanh(ag) connected layer
e =ft Oco1+ir O
0y = O-(ao)

h; = o, © tanh(c;)

https://cs231n.github.io/optimization-2/



LSTM: Backpropagation Through Time

 Compute gradient w.r.t. output gate
af = th . ht—l + fo * Xt + bf
oL oL oh, OL

a; =Wy~ he_q + Wy - x + by * 3o, = on Bo; — om tanh(c;)

ag = Whg ~he_q + Wxg *X¢ + bg . 0L _ L 9oy _ dL tanh(c,) - d(o(ay))
ao == WhO ° ht—l + on ° xt- + bO aao - aot aao - E)ht t dao
= )
fe G(af) = i- tanh(c,) - o(a,)(1 — o(a,))
. t
ir = o(a;) 5
L
G, = tanh(ag) = on, tanh(c;) - 0.(1 — o)
¢ =fOc1+i O& s _OL _ 0L da, _ OL Ry e.g., when Wy,
o, = o(a,) MWho  9ao OWpno 04 changes for a small
h, = o, © tanh(c;) . OL _ oL Jda, _ OL X, amount (0W;,,), how
OWyxo  0ap O0Wyxo da, much would L change
aL oL da, aL (and the change

db, da, 0b, da, direction)?




LSTM: Backpropagation Through Time

 Compute gradient w.r.t. cell state
af = th . ht—l + fo * Xt + bf

dL _ dL dh, _ OL 2
a: =W.: - h W.. -x b - — = . = -0, - (1 — tanh(c
i hi t—1 + xi t + i dc, dh, dcq oh, t ( ( t) )
Gg = Wig ey + Wag - Xe + by TR VR T VI
Ay = Wyp - heq + Wy, - x, + by, L L A
= oL L ¢ dL . d(tanh(ag)) oL . ~
ft a(af) . —=—~'—t=—'lt'#=—'lt'(l—Ctz)
. dag ¢y Odag dce dag dc
ir = o(a;)
oL oL Odag oL
. . — . - - h
¢; = tanh(ay) Wn, da, OWn, da, 1
e =ft Oco1+ir O , 9L _ oL dag _ oL x
o, = o(a,) OWyg day; Wy, day; ¢
hs = o, © tanh(c;) , 0L _ aL dag  aL
dbg dag 0by dag

49



LSTM: Backpropagation Through Time

ar = Wyp - heoq + Wyp - xp + by
a; = Whyi - he—q + Wy - X + b;
ag = Whg - hioq + Wiy - Xt + by
Ao = Who * heq + Wy - x¢ + by

fe = o(ay)

ir = a(a;)

Cr = tanh(ag)
¢ =fOc1+i O&
o, = a(a,)
h;, = o, © tanh(c;)

~

oL _ oL dc _ oL

= = ¢
ait aCt alt aCt t
oL 0L 9di; _ a_L
da; iy da; Adcy ¢t

oL

=9 & - a(ai)(l —

~
.

 Compute gradient w.r.t. input gate

d(o’(ai))
da;

oL . . .
U(Cli)) = e, Co ip (1 — i)

oL _ 9L  da; _ 0L

oW i - da; OWpy; . (E

oL _ 9L da; _ 0L
ani - aai ani - aai

oL _ OL da; _ OL
abl’ - aai abi - aai

: ht—l

-xt

50



LSTM: Backpropagation Through Time

 Compute gradient w.r.t. forget gate
ar = Wyp - heoq + Wyp - xp + by

oL JdL O0c oL
a; = Whyi - he—q + Wy - X + b; * a_ﬁ=a_ct'a_];=a_ct'ct—1
ag = Wyg he_q + Wy -xc +b
g hg * -1 xg ' Xt T Og oL oL on oL .d(a(af))
Clo == WhO * ht_l + on 'xt + bO aaf - aft aaf - act Ct—l daf
fe = o(ay)
i, = o(a;) = 3¢, Ct-1 G(af) (1_0(af)) de, Ct-1 (L= f)

~ d
¢, = tanh(ay) o L _OL 9y _OL g,
E)th 6af 6th 6af
¢ =ft Oco1 +i O G
oL 0L Oday 9L

Oy = G(QO) anf - aaf . anf B aaf "Xt
h; = o; O tanh(c;)

oL 0L Oday 9L

51



LSTM: Backpropagation Through Time

ar = Wyp - heoq + Wyp - xp + by
a; = Whyi - heq + Wy - X + b;
ag = Whg - hioq + Wiy - Xt + by
Ao = Who * heq + Wy - x¢ + by

fe = o(ay)

ir = oa(a;)

Cr = tanh(ag)
¢ =fOc1+it O
o, = a(a,)
h; = o; O tanh(c;)

* These computation for backpropagation
will be calculated T times (the number of
time steps)

* The weights will be updated using the
accumulated gradient w.r.t. each weight
for all time steps

e For example, 2L = yT 9L
P Powy, StEL aW,’{f
dL
th +=a *

ath



LSTM: Mitigate Vanishing Gradient

* VanillaRNNs g g <( = Oh; )8hk>

90 — Oh, 11 op. ) o0
k=1 i=k+1

Oh; “r Oh,

—|l <1 : Vanish!
Hahil — 11 Oh. anis
Oh; = Oh,;

- > 1 ! Explode!
Hahi_1 — 1l Oh. xplode

https://naokishibuya.medium.com/long-short-term-memory-394aa8461a35

53



LSTM: Mitigate Vanishing Gradient

* Vanilla RNNs g & & - Ohy,
o (1 5)%
k=1 =k+
e LSTM o0& B 9E — - ack
90  Oe, ; :1;[ oec;_1

* Recall that in
* Vanilla RNNS, h; = tanh(Wpphe_1 + Wopxs)
« LSTM, hy = 0o, ©@ tanh(c,) and ¢, = f © ¢ci—q + i O &

https://naokishibuya.medium.com/long-short-term-memory-394aa8461a35



LSTM: Mitigate Vanishing Gradient

* L5TM 0 O Z”: 9\ Ocy
00  Oc, dc;,_1 ) 00
k=1 1
ct=Cr-1 @ U(Wf - [he-1,%c]) ©
tanh (W, - [he—q, x¢]) & a(W; - [he—q, x¢])

%% .2 [ct-1 R [ D ¢ ® ;]

OCt—y 0Ct—y

Note that the notation is
different from previous

ac =R -1 @ fel + [Ct ® i¢] slides
aft 6Ct_1 alt = aét .
—_ . + . + 1
aCt_l Ct_l 6Ct_ ft aCt_l Ct aCt_l lt

55
https://medium.datadriveninvestor.com/how-do-Istm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577



LSTM: Mitigate Vanishing Gradient

* LSTM 0  OE z”: ﬁ de; \ Oey
06 N 8Cn Bci_l 06

k=1 1=k—+1

af = th °ht—1 +fo * Xt +bf

ct =1 @ a(Wr - [he—1,x]) D a; = Wy » he—q + Wy - x¢ + b
sigm’(z) = sigm(z)(1 — sigm(z)) g = Whg * ey + Wyg - X + by
tanh (W, - [he—1, x¢]) @ a(W; - [he_q, x¢]) @ =W, hyy+ W, 2, +b,
dce _ 3 ac ) , fe = o(ay)
aC:tl e — 1 ®fi D G Q] acttl =o'(Wy- [he—1,xe]) - Wy - 0r—1 @ tanh'(ce—1) - ¢t i, = o(a)
3 - l
N ) ¢, = tanh(ay)
=51 ® fil + 5= [6 ® i) z et O
+ O-I(Wl " [ht—ll xt]) = M/l = 0[’-1 ® ta]lh,(ct_l) 2 Et t t -1 t t
> aft » 6Ct 1 f+ it .,..,+ 65t -i Ot=0_(a0)
] el dce—y "' dees t oce—y ! +0' (W, - [he—1,x¢]) - We - 0p—1 @ tanh'(ce—4) - iy h, = o, ® tanh(c,)

56
https://medium.datadriveninvestor.com/how-do-Istm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577



LSTM: Mitigate Vanishing Gradient

* LSTM 0  OE z”: " e\ dey
90— e, 00

oc,_
k=1 g ==L

i=k+

A = O'I(Wf' [ht—l'xt]) Wr-0i-1 @ tanh'(ct—1) - ¢t—1

ac , ,
60;1 =g (Wf : [ht—l:xt]) g Wf +0p—q @ tanh'(c—1) - ¢t—1 B,=Ff,
+f; Ce = o' (Wi - [he—1,x¢]) - Wi 0p—4 ® tanh'(c¢—4) - C;
+0' (Wi« [he—1, x¢]) - Wi - 0p—1 Q tanh'(cp—q) - & Dt = ' (We - [he—1, x¢]) - We - 0p—1 @ tanh'(ce—y) - i
+0' (W, - [he—q, x¢]) - W - 041 Q tanh'(ci—q) - i ac
¢ -1, Xt ¢ " O%t—1 t—1) " Lt act = A, +B.+C, +D, (6)
t—1

57
https://medium.datadriveninvestor.com/how-do-Istm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577



LSTM: Mitigate Vanishing Gradient

* LSTM 0  OE Z ﬁ de, ack
00 - 8(:” i acz 1

aCt
dcr—y

=A;+B.+C.+D;, (6)

* Addictive function (rather than multiplying) and B, (forget gate vector)
help mitigate the gradient vanishing problem

https://medium.datadriveninvestor.com/how-do-Istm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577



LSTM: Key Concepts

* Maintain a separate cell state from what is outputted

» Use gates to control the flow of information
* Forget gate gets rid of irrelevant information
» Selectively updates cell state
e Output gate returns a filtered version of the cell state

* LSTM can mitigate vanishing gradient problem
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