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Recall: Long-Short Term Memory

• LSTM uses a complex recurrent unit with gates to control what 
information is passed through that can avoid vanishing gradient 
problem in standard RNNs
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• GRU is another RNN variant [Cho et al. 2014]
• GRU reduces the number of gates but achieves similar performance to LSTM

Gated Recurrent Unit (GRU)
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𝑧3 = 𝜎 𝑊4 ℎ356, 𝑥3 + 𝑏4
𝑟3 = 𝜎 𝑊7 ℎ356, 𝑥3 + 𝑏7

+ℎ3 = tanh 𝑊8 𝑟3 ⊙ ℎ356, 𝑥3 + 𝑏8
ℎ3 = z3 ⊙ ℎ356 +(1 − z3) ∗ +ℎ3

GRU Cell



𝑧! = 𝜎 𝑊" ℎ!#$, 𝑥! + 𝑏"

• Concatenate previous hidden state 
and current input

• Update gate controls what parts of 
hidden state are updated (used as 𝑧3) 
VS. preserved (used as (1 − 𝑧3))

GRU: Update Gate
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GRU Cell



𝑟! = 𝜎 𝑊% ℎ!#$, 𝑥! + 𝑏%

• Reset gate controls what parts of 
previous hidden state are used to 
compute new content

GRU: Reset Gate
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GRU Cell



+ℎ! = tanh 𝑊& 𝑟! ⊙ ℎ!#$, 𝑥! + 𝑏&

• 𝑟3 selects useful parts of previous 
hidden state

• Use 𝑟3 ⊙ ℎ356 and current input to 
compute new hidden content

GRU: New Hidden State Content
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GRU Cell



GRU: Output Hidden State
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ℎ! = z! ⊙ ℎ!#$ +(1 − z!) ∗ +ℎ!

• Update gate simultaneously controls 
what is kept from previous hidden state, 
and what is updated to new hidden state 
content

GRU Cell



GRU VS. LSTM: Which to Use?

• In many tasks, both architectures yield comparable performance [1]

• Both architectures were proposed to tackle the vanishing gradient 
problem but using a different way of fusing previous timestep 
information with gates to prevent from vanishing gradients

• Nevertheless, the gradient flow in LSTM comes from three different 
gates, so intuitively, you would observe more variability in the 
gradient descent compared to GRUs
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[1] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10), 2222–2232.

https://arxiv.org/abs/1503.04069


GRU VS. LSTM: Which to Use?

• GRU has two gates (reset and update gates) whereas an LSTM has 
three gates (namely input, output, and forget gates)

• GRU is considered more efficient in terms of simpler structure with 
fewer parameters

• In small-scale datasets with not too long sequences, it is common to 
use GRU cells since with fewer data the expressive power of LSTM 
may not be exposed
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GRU VS. LSTM: Which to Use?

• If you deal with large datasets, the greater expressive power of LSTMs 
may lead to superior results

• In theory, the LSTM cells should remember longer sequences than 
GRUs and outperform them in tasks requiring modeling long-range 
correlations

• Which to use lies in the data
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Deep RNN Examples: Stacked LSTMs
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Layer <1>
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LSTM
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LSTM
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* LSTM cell can be replaced with other RNN cells

Initialize hidden and 
cell states for Layer <1>

An example of 
“Many to One”



Deep RNN Examples: Stacked LSTMs
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Layer <1>

Layer <2>
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* LSTM cell can be replaced with other RNN cells

Stack a second 
LSTM layer

An example of 
“Many to One”



Deep RNN Examples: Stacked LSTMs
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Layer <1>

Layer <2>

Layer <3>
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* LSTM cell can be replaced with other RNN cells

An example of 
“Many to One”



Stacked LSTMs

• Staked LSTMs were first introduced in [1] for speech recognition
• They also found that the depth of the network was more important than the 

number of memory cells in a layer to model skill

• Why increasing depth?
• Given that Stacked LSTMs operate on sequence data, the addition of layers 

adds levels of abstraction of input observations over time

• Other domains
• Traffic forecast [2],  weather forecast [3]

[1] Graves, A., Mohamed, A. R., & Hinton, G. Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 6645-6649).
[2] Du, X., Zhang, H., Van Nguyen, H., & Han, Z. Stacked LSTM deep learning model for traffic prediction in vehicle-to-vehicle communication. In 2017 IEEE 86th Vehicular Technology Conference (pp. 1-5).
[3] Karevan, Z., & Suykens, J. A. (2018). Spatio-temporal stacked LSTM for temperature prediction in weather forecasting. arXiv preprint arXiv:1811.06341.



Deep RNN Examples: Bidirectional LSTM

• Regular LSTM considers forward direction, i.e., past to future
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Forward Layer
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𝑥(
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𝑥)
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“Many to Many”



Bidirectional LSTM Example

• Name Entity Recognition
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Yao loves apple , it keeps me healthy 

person fruit

Yao loves apple , it produces the best electronics

person company



Bidirectional LSTM Example

• Name Entity Recognition
• Regular LSTM networks might not work

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

Yao loves apple it keeps me healthy

fruit companyor

Yao loves apple , it keeps me healthy 

person fruit



Bidirectional LSTM
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Forward Layer

Backward Layer LSTM

𝑥$

LSTM

LSTM

𝑥(

LSTM

LSTM

𝑥)

LSTM

LSTM

𝑥*

LSTM

𝑦$ 𝑦( 𝑦) 𝑦*

Activation Layer

Output Layer
An example of 

“Many to Many”

• Bidirectional LSTM considers the sequence information in both 
directions backwards (future to past) and forward (past to future)



Bidirectional LSTM Example

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

• Name Entity Recognition
• Red arrows are the information flow

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM
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Yao loves apple it keeps me healthy

fruit



RNN Applications: Sentiment Classification 
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Ratemyprofessors Sentiment Classification 

Source: https://www.ratemyprofessors.com/ShowRatings.jsp?tid=2391740

https://www.ratemyprofessors.com/ShowRatings.jsp?tid=2391740


RNN Applications: Sentiment Classification 

21

Ratemyprofessors Sentiment Classification 

I love this class

Sentiment
<positive>

Source: https://www.ratemyprofessors.com/ShowRatings.jsp?tid=2391740

https://www.ratemyprofessors.com/ShowRatings.jsp?tid=2391740


RNN Applications: Machine Translation
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Attack on Titan, Source: https://www.youtube.com/watch?v=BhipGqSZEB0

https://www.youtube.com/watch?v=BhipGqSZEB0


RNN Applications: Machine Translation
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Sequence-to-sequence [1]
(Seq2Seq)

[1] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27.

心 臓 を 捧 げ よ <start>

Dedicate

Dedicate

your heart

your

Encoder (Japanese) Decoder (English)



Sequence-to-Sequence Learning (Seq2Seq)

• Seq2Seq is to train models that convert sequences from one domain 
(e.g., sentences in Japanese) to sequences in another domain (e.g., 
the same sentences translated to English)
• Input sequences and output sequences can have different lengths 

(e.g., machine translation, chatbot)

24Source: https://www.oreilly.com/library/view/deep-learning-essentials/9781785880360/b71e37fb-5fd9-4094-98c8-04130d5f0771.xhtml

https://www.oreilly.com/library/view/deep-learning-essentials/9781785880360/b71e37fb-5fd9-4094-98c8-04130d5f0771.xhtml


Seq2Seq

• The encoder transforms an input sequence of variable length into a 
fixed-shape context variable (e.g., hidden and cell states in LSTM)

25
Source: https://medium.com/analytics-vidhya/intuitive-understanding-of-seq2seq-model-attention-mechanism-in-deep-learning-1c1c24aace1e

https://medium.com/analytics-vidhya/intuitive-understanding-of-seq2seq-model-attention-mechanism-in-deep-learning-1c1c24aace1e


Seq2Seq

• The decoder model is trained to predict the next word in the 
sequence given the previous word

26
Source: https://medium.com/analytics-vidhya/intuitive-understanding-of-seq2seq-model-attention-mechanism-in-deep-learning-1c1c24aace1e

Pass <Go> token to indicate 
the start of prediction

https://medium.com/analytics-vidhya/intuitive-understanding-of-seq2seq-model-attention-mechanism-in-deep-learning-1c1c24aace1e


Limitations of Seq2Seq I

• At the early stages of training, the predictions 
of the decoder are very bad
• The hidden states of the model will be updated 

by a sequence of wrong predictions, and errors 
will accumulate

• Solution: Teacher Forcing

27

Feed with prediction from last step



Teacher Forcing

• Teacher forcing is a strategy for training recurrent neural networks 
that uses ground truth as input, instead of model output from a prior 
time step as an input
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Assuming the ground truth sentence is “Two people running …”. Left figure: without Teacher Forcing, the model 
keeps feeding wrong word after making one mistake. Right figure: with Teacher Forcing, our model feeds “people” 
for the 3rd prediction.



Pros and Cons of Teacher Forcing

• Pros
• Training with Teacher Forcing converges faster
• Teacher Forcing can prevent error accumulation during training

• Cons
• During inference, since there is no ground truth available, the RNN model will 

need to feed its own previous prediction for the next prediction
• There is a discrepancy between training and inference, and might lead to poor 

model performance and instability
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Curriculum Learning

• The curriculum learning is to randomly 
choose to use the ground truth 
output or the generated output from 
the previous time step as the input for 
the current time step

• The curriculum learning encourages 
the model to learn how to correct its 
own mistakes

30

Flip a coin to decide to use the true 
previous token or predicted token from 
the model



Scheduled Sampling

• The curriculum changes over time is called scheduled sampling [1]

• The scheduled sampling changes the training process from a fully 
guided scheme using the true previous token, towards a less guided 
scheme which mostly uses the generated token instead

• For example, at the beginning of the training process, using Teacher 
Forcing. After several epochs, using the prediction as the input.

31
[1] Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015). Scheduled sampling for sequence prediction with recurrent neural networks. Advances in neural information processing systems, 28.



Limitations of Seq2Seq II

• The encoder and decoder works fine for short sequence
• However, when the sequence is long, the encoder might be difficult 

to memorize the entire sequence into a fixed-sized vector and to 
compress all the contextual information in the sequence

• Solution: Attention

32Source: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html


Attention in Seq2Seq

• Let the model "focus" on different parts of the output from encoder

33Source: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html


Attention in Seq2Seq

• Let the model "focus" on different parts of the output from encoder

34Source: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html


Attention in Seq2Seq

• Let the model "focus" on different parts of the output from encoder

35Source: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html


Attention in Seq2Seq

• Let the model "focus" on different parts of the output from encoder

36Source: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html


Attention in Seq2Seq

• Let the model "focus" on different parts of the output from encoder

37Source: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html


More than Language Models
RNN in Sports 

• Sport is a sequence of event (e.g., sequence of images, voices) 
• Applying RNN to basketball trajectories in the form of sequence modeling to 

predict whether a three-point shot is successful [1] 
• Action Classification in Soccer Videos with Long Short-Term Memory 

Recurrent Neural Networks [2] 

38
[1] Shah, Rajiv, and Rob Romijnders. "Applying Deep Learning to Basketball Trajectories." arXiv preprint arXiv:1608.03793 (2016). 
[2] Baccouche, Moez, et al. "Action classification in soccer videos with long short-term memory recurrent neural networks." International Conference on Artificial Neural Networks. Springer 
Berlin Heidelberg, 2010. (The Image is taken from the paper)



More than Language Model
Traffic Forecasting

• Traffic forecasting is to predict the future traffic speeds of a sensor 
network given historic traffic speeds and the underlying road networks

39
[1] Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926. Images are taken from the paper.



Traffic Forecasting

• The paper [1] constructs the sensor network as a graph and embeds 
graph in the RNN model to capture spatiotemporal evolution

40
[1] Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926. Images are taken from the paper.



Summary

• GRU is another RNN variant
• Stacked RNN and bidirectional RNN are useful RNN architectures
• Teaching forcing and curriculum learning strategies accelerate the 

training process and improve the overall performance
• RNNs have been applied in various domains and applications 

combined with other techniques
• Convolution Neural Networks -> ConvLSTM
• Graph convolution
• Attention
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